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Microscopic Derivation of the Spin-Orbit Potentials of He and t
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It has been reported that the scattering data of He and t require the spin-orbit (l>s)
potentials of these projectiles to be a few times stronger than are expected by the folding
model . It is therefore important to ^rive and study microscopically the 1-s potential
of 3N particles where 3N particle means He or t, jg

VVe have used the resonating group method (RGM) for the systems, 3N+ O and
3N+ Ca. The RGM equation of motion is written as

Jh(r,r')Z(r') dr' = EZ(j),

+ Q,CK k'j + Q,(F! p'; ICP-'P';- 5 ^ Ijj

Th^ non-local interaction G j[(r,r')ffi/i)(rxf') • s comes from the two-nucleon spin-orbit fMce
v^s and gives rise to the 1-s potential of 3N. By applying the WKB approximation 'to
Eq.fl), we obtain the Hamilton-jacobi equation

from which we determine the local momentum "plr) under ̂ he condition |rxp(r)| =fi(l+5). In
Eq.(2), Gj(r,p) and Gi(r,p) are Wigner transforms of Gi(r,r') and Gj(r,r'), respectively, and
1 and j are orbital and total angular momenta, respectively. ^

For each of j=l+2 and ^1-2 we calculate the local momentum p.(r) and then define the
equivalent local potential V.^(r) by

\'®''(r) = E - (i/2|i)(Pj(7))^ . (3)
Then the central potential V (r) and the 1-s potential V, (r) of 3N particle are obtained to
be

V>) = ((ll+DV®'' , (r) (r))/{2fi+l) ,

Vis(r) = (r) - mhi) . (4,
^  NN

There are two origins of V. (r); One is of course the direct contribution of v ls» which
constitutes the main part or V. (r). The other is the r^normalization from the non-local
central interaction; namely since is not equal to 7, i(r), the equivalent local poten
tial coming from the non-local centi%l potential takes difie?ent values for different j val
ues, and-this difference of the central potential should be accounted for as the 1-s poten-
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As for the main part of V, (r) due to the direct contribution of v , it can be divided
into three components: Since 1:hree nucieons ofQ3N particle are accoimnodated in the va
lence orbits around the core nucleus ( O or Ca), the 1-s potential of the 3N particle
comes from three terms, the Hartree and Fock potentials of the valence nucieons and the
mutual interaction among the valence nucieons. Tl^ last term is found to be negligibly
smalL-which is due to the weak E component of v and the extreme short-range nature
of V|c. The contribution from the Fock potential Ti comparable in j^gnitude with that
from tne Hartree potential, due to the extreme short-range nature of v
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The calculated results of V. (r) are shown in Fig.l in the case of He+ for two in

cident energies 5 MeV/u and Itf MeV/u. The ̂ cillator parameter 0»14 fm , the effec
tive central two-nucleon force is Volkov No.l with m=0.623 and Vi q is taken from Ref.4.
In Fig.l we compare V, (r) with the double-folding l-s potential Vjyg without exchange ef
fects. We see that in® the surface region Vj^lr) is larger than Vj^lr) by more than two
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Fig.l The total l-s potential V. (r) (solid line), the double-folding 1-s potential
vAr) (dash-dotted line) and the ®renormalizatioij 1 • s^^potential Vj^®(V) from the
central potential .(dotted line) are shown for He+ Ca. Here also the ratio
RATIO = V. (r)/Vnr) (solid line) is displayed, for which the scale is given by
the right-hancl-side®ordinate.
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