Proc. Sixth Int. Symp. Polar. Phenom. in Nucl. Phys., Osaka, 1985 J. Phys. Soc. Jpn. 55 (1986) Suppl. p. 868-869

3.33

Measurement of the Transverse Polarization Transfer in ²H(p,n)2p at 0⁰ at 54 MeV

7

C. Gysin, M. Hammans, R. Henneck, J. Jourdan, W. Lorenzon M.A. Pickar, I. Sick Institut für Physik, Universität Basel, Switzerland

A. Berdoz, F. Foroughi, C. Nussbaum Institut de Physique, Université de Neuchâtel, Switzerland

> S. Burzynski Institute of Nucl. Research, Warszawa, Poland

We have performed a new, high accuracy measurement (see ref. 1 for previous data) of the transverse polarization transfer coefficient K $Y'(0^{\circ})$ in ${}^{2}H(p,n)2p$ at a mean proton energy of 54 MeV. This reaction is being used as a source of quasi-monoenergetic polarized neutrons with energies up to ~70 MeV at the SIN injector cyclotron ². Besides a high precision calibration of the neutron polarization we were especially interested in its dependence on excitation energy.

The experimental setup was as follows: neutrons produced in a 4.4MeV thick liquid D_2 target were collimated under 0° onto an "active" liquid "He target". Neutrons scattered from this target were detected by 2 pairs of plastic scintillation counters (10 cm wide, 50 cm high and 8.4 cm thick) at 1 m distance. The proton polarization $P^{\rm D}$ was measured periodically in a polarimeter upstream via p^{-12} C elastic scattering.

The data were written on tape in event mode. An event consisted of 4 parameters: 1) the TOF between a recoil α signal in the ⁴He target and the cyclotron RF signal, (t_{α}) .From this we determined the neutron energy. 2) the recoil α pulse height. 3) the TOF between the target and the plastic detectors, $(t_{-}).4$) the pulse height in the plastic detectors. In the off-line analysis rather tight cuts were set on parameters 2, 3 and 4. As a result the peak to background ratio in the $t_{\rm n}$ spectra improved from 2:1 to 100:1. For a first analysis the cut on the neutron energy was such as to accept all neutrons in the peak region (see fig. 1).

For each scattering angle a number of separate runs was performed, from which the normalized asymmetry $\varepsilon_{\rm N}=\varepsilon/{\rm P}^{\rm p}$ was derived using the super ratio method. The variance of these measurements is consistent with the expected statistical errors. In table I we have listed $\varepsilon_{\rm N}$ and its statistical uncertainty for all 5 angles, as well as the quantities discussed below.

⁰ lab	ε _N	Δε _N	FG cori	MS1 rections	MS2 [%]	Ay	к _у у'	^{γκ^y} λ
118.4	-0.10	.02	3.9	1.3	1.2	0.563	-0.19	0.03
126.7	-0.28	.01	2.6	1.4	2.1	0.880	-0.34	0.01
135.0	30	.01	1.5	1.2	1.6	0.890	-0.36	0.01
143.3	27	.01	0.8	1.0	1.5	0.740	-0.37	0.01
151.6	18	.01	0.4	1.0	1.1	0.558	-0.34	0.02

Table I. For explanation of the quantities see text

Fig. 1 Neutron yield (dashed curve, left-hand scale) and polarization transfer $K_y Y'(0^0)$ (crosses, right-hand scale) as a function of neutron energy E_n for 56.3 MeV incident protons. In the next step $\varepsilon_{\rm N}$ was corrected for finite geometry (FG) and multiple scattering (MS) effects. Using a new Monte-Carlo code MS effects in the liquid itself (called MS1) as well as in combination with the target vessel, cold shield and vacuum tank (called MS2) were calculated ³). It was found that the MS2 corrections are by no means negligible; they are in fact in our case larger than the MS1 corrections.

The corrected asymmetries were then divided by the $p\alpha$ analyzing power A,, obtained from the phase shift solution 2 of ref. 4 (in principle one should use pa phases which have been properly corrected for Coulomb effects. However in the back-angle maximum these corrections are almost zero ⁵). Since any possible discrepancies in A_v would be smallest in the vicinity of the maximum,we used for the final extraction of $K_y Y' = \epsilon_N(0) / A_y(0)$ only the 3 central angle measurements. We obtained $K_v \tilde{Y}'(0^\circ) =$ -0.36 ± 0.009 where the uncertainty contains the statistical uncertainties of the measured quantities ε , P^p and the uncertainties

of the corrections ³⁾. If we use the na phase shifts of ref. 6 (which shift the angle of the A maximum by 3° !) K Y (0°) changes by 0.6%. Altogether we estimate the uncertainty due to the normalization of P^p and A_y to be < 3%. Our result for K_yY'(0°) is larger than the value obtained by ref. 1 at ~50 MeV, however it seems compatible if one bears in mind its strong dependence on excitation energy.

in mind its strong dependence on excitation energy. In order to study the dependence of K_y^Y (0°) as a function of excitation energy,the t_α spectrum was divided into 5 bins and K_y^Y extracted as described above. Fig. 1 shows the results of a preliminary analysis which was done only for the measurements at 126.7° and 143.3°. The horizontal error bars reflect the uncertainty in the TOF determination, mainly due to the ~1.9 ns time resolution of the proton beam.

Also indicated (dashed line) is the corresponding neutron yield as measured in the ⁴He target. Again the TOF uncertainty has increased the FWHM from a real \sim 4.8 MeV to \sim 7.0 MeV.

The dependence on excitation energy shown here clearly contradicts an impulse approximation prediction $^{7)}$, but is very similar to measurements and a Faddeev type prediction at energies around ~13 MeV $^{8)}$.

References

1) L.P. Robertson et al., Nucl. Phys. A134 (1965) 545

- 2) S. Burzynski et al., SIN Newsletter 16, NL 126
- 3) S. Burzynski and R. Henneck, contribution to this conference
- 4) T. Saito, Nucl. Phys. <u>A331</u> (1979) 477
- 5) J. Fröhlich et al., Nucl. Phys. A384 (1982)97; H. Zankel: priv. comm.
- 6) H. Krupp et al., Phys. Rev. C30 (1984) 1810
- 7) G.V. Dass, N.M. Queen, J. Phys. A (Proc.Phys.Soc.) 2, (1968) 259
- 8) P.W. Lisowski et al., Nucl. Phys. <u>A334</u> (1980) 45