Proc. Sixth Int. Symp. Polar. Phenom. in Nucl. Phys., Osaka, 1985 J. Phys. Soc. Jpn. 55 (1986) Suppl. p. 880-881

3.39

 4 He (\vec{p},p) ⁴He Analyzing Powers, Phaseshift Analysis and Determination of the A_v = 1 Point below 2.15 MeV

S. Tharraketta, W. Arnold, H. Baumgart, J. Günzl, A. Hofmann, E. Huttel, N. Kniest and G. Clausnitzer

Institut für Kernphysik, Strahlenzentrum der Universität Giessen, D-6300 Giessen, West Germany

Polarized 4 He+ \vec{p} elastic scattering is of special interest for the calibration of high efficiency polarimeters due to its analyzing power maxima $A_y=1^{1}$, which can be used as a primary standard for polarization measurements.

The analyzing power has been measured in the energy range 1.1 MeV $\leq E_p \leq 2.15$ MeV in steps of 150 keV and 25 keV around the Ay=1 maximum, respectively. 14 surface barrier detectors have been installed in left-right position within the angular range of $37^{\circ} \leq 0_{CM} \leq 165^{\circ}$. The ⁴He-gas target (40 Torr) was isolated from the beam tube by an Al entrance foil with a measured energy loss of 17 keV for 1.5 MeV protons ($\approx 130 \ \mu g/cm^2$).

The asymmetry has been obtained from equation (1)

$$\varepsilon = P \cdot A_{y} = \frac{N_{L}^{\dagger}/N_{L}^{\circ} - N_{R}^{\dagger}/N_{R}^{\circ}}{N_{L}^{\dagger}/N_{L}^{\circ} + N_{R}^{\dagger}/N_{R}^{\circ}}$$
(1)

where $N^{\uparrow}(N^{\circ})$ represents the integral of the proton peak in the spectrum recorded with proton polarization on (off). Using the new 1 MV tandem accelerator before installation of a foil stripper the polarization was determined to be 0.37 with an error of $\Delta P/P=\pm0.3$ % and has been fixed in a normalization procedure from intermediate measurements at $E_p=1.9$ MeV.

Afer corrections for dead time (0.1%), angular range (< 0.4%) and apparative effects (< 0.01%) a statistical accuracy for the analyzing power of $\Delta A_y = \pm 0.003$ has been achieved. For $\Theta_L \leq 60^\circ$ the ⁴He recoil peak has been analysed additionally. Fig. 1 shows the analyzing powers below $E_p = 2.15$ MeV as a function of proton energy and scattering angle.

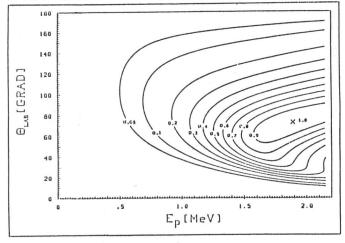


Fig. 1: Analyzing powers for ^{4}He + \vec{p} elastic scattering in a $\text{E}_{\text{LAB}}-\theta_{\text{LAB}}$ contour plot.

A phaseshift analysis for 1 < 1 has been performed for the present data together with σ - and A_y -data from earlier measurements in the energy range 0.35 MeV $\leq E_p \leq 1.1$ MeV. In order to present the values for energy and scattering angle of the lowest $A_y = 1$ point an 'effec-tive range' parametrization²,³) has been performed to describe the phases. Table I shows the results for the scattering length and effective range; the consideration of additional terms gave no significant change in χ^2 .

Table I. Effective range parameters from the phaseshift analysis of the present data. For comparison the values of Ref. 4 are shown in brackets.

⁵ 1/2	a _s (fm)			a _r (fm)	
	4.701	± .014	(4.970)	1.729 ± .035 (1.29	
P3/2	-49.843	<u>+</u> .087	(-44.830)	214 ± .001 (36	
P1/2	-15.278	<u>+</u> .179	(-19.360)	.019 <u>+</u> .028 (.34	

For the determination of the $A_y=1$ point the ratio of the scattering amplitudes g/f and the analyzing power around the maximum have been calculated from the phases⁵. The A_Y =1 point which is related to g=if¹) is given by the values E_p = 1.89 MeV and Θ_{CM} =87.04°. The error interval is given by the area 0.999 $\leq A_Y \leq$ 1.0. Fig. 2 shows the corresponding contour plot.

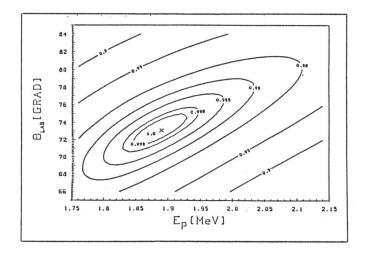


Fig. 2: Analyzing powers from the present analysis as a function of E_{LAB} and Θ_{LAB} around the A_V =1 maximum.

References

- 1) G.R.Plattner and A.D.Bacher, Phys. Lett. <u>36B</u> (1971) 211. 2) J.D.Jackson and J.M.Blatt, Rev.Mod.Phys. <u>22</u> (1950) 77.
- 3) T.Teichmann, Phys. Rev. 83 (1951) 141.
- 4) R.A.Arndt, D.D.Long and L.D.Roper, Nucl. Phys. A209 (1973) 429.
- 5) S.J.Moss and W.Haeberli, Nucl.Phys. 72 (1965) 417.