Proc. Sixth Int. Symp. Polar. Phenom. in Nucl. Phys., Osaka, 1985 J. Phys. Soc. Jpn. 55 (1986) Suppl. p. 892-893

3.45

Scattering of alpha-particles by helium-3 and new resonances of A = 7 system at high excitation energies

A.M.Yasnogorodsky, V.V.Ostashko, V.N.Urin, A.N.Nenakhov

Institute for Nuclear Research, 252028 Kiev, USSR

An indication for high-lying states of ⁷Be at excitation energy E_x 50 MeV was found in the study of ⁶Li(p, α)³He reaction¹) and it was corroborated for mirror ⁷Li system by measurement²) of missing mass spectra in ⁷Li(h,pd)⁷Li reaction. Further investigations of high excitation region of A = 7 nuclei are stimulated by the predictions of microscopic theories. The single-channel resonating group method (RGM), which accounts for inelastic channels phenomenologically through introducing an imaginary term to the theoretical interaction potential between A = 3 and A = 4 systems, predicts the cluster-type states with large alpha-particle widthe³). Filippov and co-workers⁴) have taken into account the interplay of cluster and collective modes, and arich spectrum has been predicted for 1p-shell nuclei at high excitation energies, including E_x above the total break up threshold.

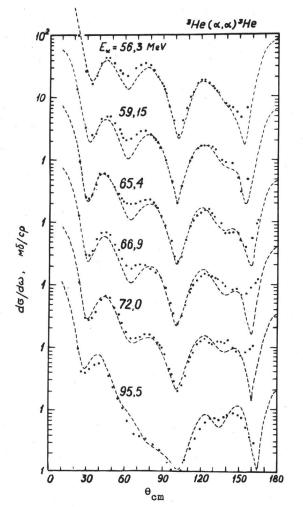


Fig.1. Differential cross sections of the 3 He(α, α)³He scattering. The curves are calculated with phase shifts of ref.3.

In this work some results are presented on the experimental study of the excitation range 25 to 43 MeV of the ⁷Be system, which have been obtained through the measurement of the differential cross section $\sigma_0(\theta)$ and analyzing power $A_y(\theta)$ in the elastic scattering of alpha-particles by the unpolarized and polarized ³He target at 56 to 95 MeV energy range.

In comparison with the data⁵⁾ at lower energy, the main features of the observed energy dependence of the $\sigma_0(\theta)$ (see Fig. 1) are as follows: the splitting of the maximum at $\theta = 60^{\circ}$ and its almost complete smoothing down with the energy increase; the splitting of another maximum at 120 - 140° with a gradual rearrangement of intensity in this split maximum.

Using the phase shifts resulted from the single-channel RGM 3), we have calculated the $\sigma_{0}(\theta)$ for the whole studied energy range. The theoretical phase shifts demonstrate the known resonant-like behaviour. At Ex near 30 MeV the δ_A and δ_5 phase shifts reach, after smooth rise, the maximum values of 90°, and the corresponding absorption coefficients η $_{\rm L}$ are of minimum values. The energy dependence of G- and H-wave spin-orbit splittings show an obvious structure, and some broad structure is also predicted for L = 6. Since the theoretical angular distributions (Fig.1) reproduce the main features of the experimental data it should be pointed out that the $\sigma_{o}(\theta)$ data support the conclusion³⁾ about existence of G- and H-wave resonances at the indicated energy interval.

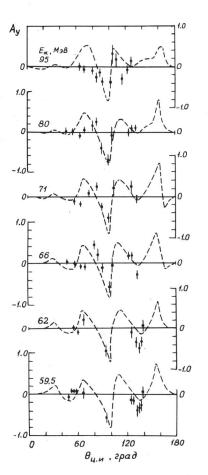


Fig.2. Analyzing power of the ${}^{3}\text{He}+\alpha$ scattering. See caption to Fig.1.

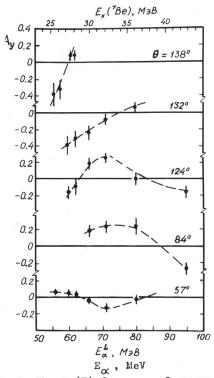


Fig.3. The A_y(E) for several cm angles. The curves are only to guide the eye.

The data for analyzing power are shown in Fig.2. The measurements were performed using the the ³He polarized target which is described in ref.6. The agreement of measured A_y with the RGM predictions is not as impressive as for $\sigma_0(\Theta)$. There are discrepancies in the shape of angular and energy dependence of A_y at $\Theta = 120 - 140^\circ$ and

 $\theta = 60 - 80^{\circ}$. At $\theta \simeq 70^{\circ}$, $E_{cm} \sim 40$ MeV the predicted by RGM positive maximum of A_y is not observed. The polarization measurements show that some corrections of the theoretical phase shifts are needed.

As it is well known the zero crossing of $A_y(E)$ is one of the essential indications of possible resonance character of interaction. Two zero crossings are observed in the energy dependence of A_y at several angles, see Fig.3, at the excitation energy of 30 and of 38-40 MeV. That supports the prognosis of the microscopic calculations ^{3,4} on the possibility of unbound states of A = 7 system at E_x of several tens of MeV. More definite conclusions on the properties of the found resonance structure can be drawn only after additional analysis which is in progress.

References

1) O.F.Nemets et al.: Yadernaya Fizika 40(1984)43.

- 2) R.Franke et al.: Nucl. Phys. A433(1985)351.
- 3) R.D.Furber et al.: Phys. Rev. C25(1982)23.
- 4) G.F.Filippov, V.S.Vasilevsky, A.V.Nesterov: Yadernaya Fizika 40(1984)1418.
- 5) P.Schwandt et al.: Phys. Lett. B30(1969)30.

6) A.M.Yasnogorodsky, V.V.Cstashko: See these Proceedings.