Proc. Sixth Int. Symp. Polar. Phenom. in Nucl. Phys., Osaka, 1985 J. Phys. Soc. Jpn. 55 (1986) Suppl. p. 918-919

4.2

Analyzing Powers for the ${}^{13}C(\dot{p}, \pi^{\pm})$ Reactions at $T_p = 200$ MeV.

E. Korkmaz, W.W. Jacobs, T.G. Throwe, S.E. Vigdor, M.C. Green[†], P.L. Jolivette^{††}, and J.D. Brown^{†††}

Indiana University Cyclotron Facility, Bloomington, Indiana 47405, U.S.A. [†] Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A. ^{††} Department of Physics, Hope College, Holland, Michigan 49423, U.S.A. ^{††}Department of Physics, Princeton University, Princeton, New Jersey 08544, U.S.A.

Analyzing power (A_y) measurements for exclusive (\vec{p}, π^{\pm}) reactions have proved very useful for investigating the pion production mechanism. Studies near threshold have revealed several apparent A_y signatures¹⁻⁴ -- of quite different nature for (\vec{p}, π^{-}) and (\vec{p}, π^{\pm}) -- of the dominant role of a two-nucleon mechanism (TNM -- NN \rightarrow NN π inside the nucleus). The most striking feature of the (\vec{p}, π^{-}) data is the strong variation in A_y with final state, epitomized by the change in sign observed¹ between ${}^{12}C(\vec{p}, \pi^{-}){}^{13}O_{g.s.}$ and ${}^{13}, {}^{14}C(\vec{p}, \pi^{-}){}^{14}, {}^{15}O_{g.s.}$, confirming TNM expectations.¹ Furthermore, (\vec{p}, π^{-}) transitions², ³ to Ofw 2p-1h "stretched" states show a unique A_y pattern independent of target mass,² but differing substantially from lower-spin results. In contrast, (\vec{p}, π^{+}) data are most remarkable for the absence of any systematic state-dependence in A_y behavior: most transitions have A_y similar (after transformation to the nucleonnucleus c.m.) to that observed near threshold for the <u>free</u> $\vec{pp} \neq d\pi^{\pm}$ process.⁴

Differences between (\vec{p}, π^-) and (\vec{p}, π^+) results are qualitatively explained by a TNM. In this model a (p, π^-) transition between given initial- and final-state (2p-1h) configurations proceeds via $pn \rightarrow pp\pi^-$ with a target neutron from a specific shell model orbital. These restrictions, combined with structure or mechanism (e.g., short-range interaction) constraints on the final-state protons' coupling, often fix the preferred relative spin and orbital orientations of the interacting nucleons.^{1,3} Distorted waves then may give a strong state-dependent contribution to A_y , superimposed on any A_y intrinsic to the (unmeasured) $\vec{pn} \rightarrow pp\pi^-$ process.^{1,3} The spin system is much less constrained for most (p, π^+) transitions, in part because several NN isospin (T_f) channels can contribute: $pp \rightarrow (np)_{Tf=0}\pi^+$, $pp \rightarrow (np)_{Tf=1}\pi^+$, $pn \rightarrow nn\pi^+$. Even assuming the first of these amplitudes to be dominant inside a nucleus, as it is known to be in free NN interactions near threshold, ⁵ typical (p, π^+) transitions involve nucleons from a variety of orbitals (since a final-state nucleon can refill holes left by the struck nucleon, in contrast to $pn \rightarrow pp\pi^-$). These multiple reaction paths should average over different spin couplings, washing out state-dependent effects and leaving the intrinsic A_y of the dominant NN $\rightarrow NN\pi$ process as the primary contribution in (p, π^+) .

To compare (\vec{p}, π^+) and (\vec{p}, π^-) reactions under similar conditions, and to investigate further the influence of the fundamental NN \rightarrow NN π channels on their Ay behavior, we have measured d $\sigma/d\Omega(\theta)$ and Ay(θ) for ${}^{13}C(\vec{p}, \pi^{\pm})$ populating the mirror nuclei ${}^{14}C$ and ${}^{14}O$ at $E_x < 25$ MeV. More strong states are seen in the (p, π^+) spectra than in (p, π^-) , in accord with expectations based on the coherence of multiple (p, π^+) amplitudes vs. the highly restricted TNM path for all (p, π^-) transitions. The $(p, \pi^+)-(p, \pi^-)$ comparison aids identification of populated states since their relative strength in (\vec{p}, π^-) is dominated by momentum-matching considerations; ⁶ thus, apparent mirror peaks strong in both spectra probably indicate high-spin 2p-lh (with respect to ${}^{13}C$) states. We concentrate here on Ay for continuum regions in both spectra and for several discrete (\vec{p}, π^+) transitions. Among the latter are two states in ${}^{14}C$ not previously identified: one at $E_x=14.87$ MeV, to which we assign J $\pi=5^-$ on the basis of the (\vec{p}, π^{\pm}) results in conjunction with other A=14 studies; and a second at $E_x=23.2$ MeV, discussed below.

The most striking general feature of the observed analyzing powers is the overall negative A_y (characteristic of free $pp \rightarrow d\pi^+$) for both the continuum and nearly all discrete states in ${}^{13}C(p,\pi^+)$, illustrated in Fig. 1 by the spin-difference spectrum that is a nearly perfect reflection of the spin-sum spectrum. This behavior persists with angle, as revealed by the strikingly similar $A_y(\theta)$ results for two (~1 MeV wide) representative continuum regions (Fig. 3) and three strong discrete transitions (Fig. 2a). The few exceptional (p,π^+) transitions for which A_y deviates significantly from this trend are highlighted in Figs. 1c and 2b, and discussed below. Spin-difference spectra for the ${}^{13}C(p,\pi^-)$ reaction (not shown) reveal much more state-to-state

variations in Ay than are observed for (\vec{p},π^+) , again in agreement with the expectations outlined above. However, continuum regions of the (\vec{p},π^-) spectrum do show a stable A_y distribution (see Fig. 3), which is furthermore quite similar to continuum (\vec{p},π) data on ¹⁸0, ²⁶Mg, and ⁴⁸Ca targets.⁷ The continuum presumably averages over state-dependent contributions of opposite sign, and it is tempting to interpret these $A_{\nu}(\theta)$ results as reflections of the intrinsic $pn \rightarrow pp\pi^{-}$ behavior. The observed sign difference in Fig. 3 between A_y for the (\vec{p},π^{\pm}) continua might then arise from the different angular momentum coupling of the final-state nucleon pairs which accompany their opposite isospin couplings (T_f=0 mainly for (p, π^+) vs. T_f=1 for (p, π^-)).

Since the $\vec{p}p \rightarrow d\pi^+$ analyzing power appears to dominate in $A(\vec{p},\pi^+)A^+1$, anomalous $A_y(\theta)$ may signal transitions which proceed primarily via normally weak (i.e., $T_f=1$) NN \rightarrow NN π isospin channels. Data for two such anomalous cases are shown in Fig. 2b. The anomaly for the 10.74-MeV 4^+ state is not surprising, since this state is believed to be predominantly a two-neutron excitation from the 14 C ground state, accessible in (p,π^+) only via pn \rightarrow nn π^+ on the $p_{1/2}$ target neutron. The cross section observed for this state is indeed comparable in magnitude to that for its mirror counterpart in $^{13}C(p,\pi^{-})$, which would proceed by the charge-symmetric process pn \rightarrow pp π^{-} . The strongest (p, π^+) transition with anomalous Ay behavior is that to the sharp $E_x=23.2-MeV$ state. A natural explanation for all its observed features, except the large yield (an order of magnitude greater at forward angles than the strongest (p, π^{-}) transitions), is that it has T=2 and therefore cannot be populated via $pp \rightarrow (np)_{Tf=0}\pi^+$. If this interpretation is correct, we are seeing evidence for an unexpectedly strong enhancement of normally weak NN \rightarrow NN π isospin channels inside the nucleus. An alternative explanation (also incomplete) is that it is a T=l state of maximal spin accessible

in (p, π^+) -- namely, $|^{13}C \propto (\pi p_3/2)^{-1}(\pi d_5/2)(\nu d_5/2) > 7+$ -- where the strongly constrained angular momentum coupling produces a large state-dependent modification of $A_v(\theta)$. We are initiating other reaction studies to test these hypotheses.

Fig. 1. Spin sum and spin difference (\bar{p}, π^+) spectra.

Fig. 3. Analyzing power for the ${}^{13}C(\vec{p},\pi^{\pm})$ continua.

References

1) W.W. Jacobs et al., Phys. Rev. Lett. 49, 855 (1982).

- 2) M.C. Green et al., Phys. Rev. Lett. 53, 1893 (1984).
- 3) H. Toki and K.I. Kubo, Phys. Rev. Lett. 54, 1203 (1985); Vigdor et al., ibid, 1204. 4) E.G. Auld et al., Phys. Rev. Lett. <u>41</u>, 462 (1978).
- 5) B.J. VerWest and R.A. Arndt, Phys. Rev. C 25, 1979 (1982).

0.8

6) S.E. Vigdor et al., Phys. Rev. Lett. 49, 1314 (1982).

7) J.J. Kehayias, Ph.D. thesis, Indiana University, 1983; T.G. Throwe, ibid, 1984.