Proc. Sixth Int. Symp. Polar. Phenom. in Nucl. Phys., Osaka, 1985 J. Phys. Soc. Jpn. 55 (1986) Suppl. p. 940-941

4.13

Spin-flip Probabilities for the 40,48Ca(\vec{p},\vec{n}) Reactions at 135 MeV

J.W. Watson, B.D. Anderson, A.R. Baldwin, T. Chittrakarn, B.S. Flanders, R. Madey, P.J. Pella[†] and C.C. Foster^{††}

Department of Physics, Kent State University, Kent, OH 44242, USA [†]Department of Physics, Hendrix College, Conway, AR 72032, USA ^{††}Indiana University Cyclotron Facility, Bloomington, IN 47405, USA

Spin-flip modes of excitation are known to be important at medium energies. The most direct technique for studying such excitations is polarization transfer. We present here polarization-transfer measurements for (p,n) reactions on ^{40}Ca and ^{48}Ca at 135 MeV. We measured p_n , the polarization of the detected neutron, which is related to the incident proton polarization p_p , and the polarization-transfer coefficient K_y^{V} (Madison convention) as follows:

$$[1 + p_p A_y(\theta)]p_n = P(\theta) + p_p K_y^{y'}(\theta).$$

Here $A_y(\theta)$ and $P(\theta)$ are the analyzing power and the polarization function, respectively. Since A_y and P vanish identically at 0°, this expression simplifies to $p_n = p_p K_y^y(0^\circ)$. The relation between the spin-flip probability "S" and K_y^y is: $2S = (1 - K_y^y)$. S is expected¹) to take on characteristic values which depend on $\Delta \ell$, Δs and ΔJ for the transition. Specifically, all $\Delta s = 0$ transitions have S = 0, and "Gamow-Teller" (G-T) transitions ($\Delta \ell = 0$, $\Delta s = 1$, $\Delta J = 1$) should have spin-flip probabilities S = 2/3.

The experiment was performed with the "beam-swinger" at the Indiana University Cyclotron Facility. The average proton beam polarization was 77%. The flight path to the polarimeter was 35 m. The neutron polarimeter, which has an average analyzing power $\overline{A}_y = 0.275 \pm 0.010$ and an efficiency $\varepsilon = (2.40 \pm 0.24) \times 10^{-3}$, is described in detail in Ref. 2.

In Figure 1 we compare S spectra for both ^{40}Ca and ^{48}Ca with 1 MeV binning to reduce statistical fluctuations. Note that the region labeled "GTGR" (Gamow-Teller Giant Resonance) for 48 Ca, where S has a constant value of 2/3, extends down to about E_n = 115 MeV, which is 5 MeV beyond the GTGR peak. Our recent analysis³) of crosssection data indicates that the continuum under and immediately adjacent to the GTGR is predominantly $\Delta \ell = 0$. This observation, coupled with our measured value of S = 2/3 implies that this region of the continuum is predominantly 1⁺ strength. Thus we confirm our prior analysis³⁾ that nearly 20% of the G-T sum-rule strength is in the continuum underneath and adjacent to the GTGR. Consider now the region 90 < E_n (MeV) < 105; in this energy interval, S is the same within statistical uncertainties of a few percent for these two targets. This result can be interpreted in several ways. One might argue that ⁴⁰Ca is a spin-saturated self-conjugate target and can have no G-T strength; therefore, the identical values of S for 40 Ca and 48 Ca imply that ⁴⁸Ca has no G-T strength in this part of the continuum, contrary to what is suggested in Refs. 4, 5 and 6. Alternatively, one might argue that both 40 Ca and ^{48}Ca have multi-particle-multi-hole ground-state correlations; these must, in fact, be the origin of the two weak low-lying 1⁺ states populated in the $^{40}\text{Ca}(\text{p},\text{n})^{40}\text{Sc}$ reaction. Ground-state correlations can also give rise to G-T strength in the continuum; similar ground-state correlations might produce similar values of S in the continuum. The interpretation we prefer is that QFS (as observed earlier⁷) is the origin of the continuum because the observed value of S \sim 1/2 is to first order the value expected for QFS. Note that S = 1/2 when $p_n = 0$; p_n should be close to 0 (and S close to 1/2) for both targets because the polarization-transfer parameter " D_t " for p-n scattering near 180° is close to zero.⁸) Considering these three arguments, we conclude that there is no solid evidence in these spin-flip spectra for or against the presence of residual G-T strength for 48 Ca in this part of the continuum (90 \leq E_n (MeV) ≤ 105). We can neither confirm nor reject suggestions^{4,5,6}) that the continuum in this Q-value region (-30 to -45 MeV) contains a significant amount of

"missing" G-T sum-rule strength. This work was supported in part by the National Science Foundation.

Figure 1. Spectra of the spin-flip probability S $\begin{bmatrix} S = (1 - K_y^V)/2 \end{bmatrix}$ for the 135 MeV (\vec{p}, \vec{n}) reactions on ${}^{40}Ca$ and ${}^{48}Ca$ at 0°.

References

- 1) W.D. Cornelius, J.M. Moss and T. Yamaya, Phys. Rev. C23 (1980) 1364.
- 2) R. Madey, J.W. Watson, B.D. Anderson, A.R. Baldwin and P.J. Pella, in Proceedings of the CEBAF Summer Workshop (June 3 to 7, 1985, Newport News, Virginia).
- 3) B.D. Anderson, et al., Phys. Rev. C31 (1985) 1161.
- 4) G.F. Bertsch and I. Hamamoto, Phys. Rev. C26 (1982) 1323.
- 5) F. Osterfeld, D. Cha and J. Speth, Phys. Rev. C31 (1985) 372.
- 6) Amir Klein, W.G. Love and N. Auerbach, Phys. Rev. C31 (1985) 710.
- 7) B.D. Anderson, et al., Phys. Rev. Lett. <u>46</u> (1981) <u>226</u>.
 8) P.M. Patel, et al., Phys. Rev. Lett. <u>8</u> (1962) 491; W.G. Collins, Jr., and D.G. Miller, Phys. Rev. 134 (1964) B575.