Proc. Sixth Int. Symp. Polar. Phenom. in Nucl. Phys., Osaka, 1985 J. Phys. Soc. Jpn. 55 (1986) Suppl. p. 978-979

5.13

The Reaction $p\overline{p} \rightarrow \Lambda \overline{\Lambda}$ in a K+K* Exchange Coupled Channels Approach

J.A. Niskanen

Research Institute for Theoretical Physics, University of Helsinki, Siltavuorenpenger 20 C, SF-00170 Helsinki, Finland

In a recent experiment at LEAR the differential cross section and the spin observables of the reaction $p\bar{p} \rightarrow \Lambda\bar{\Lambda}$ have been measured¹). In principle this reaction has a strong potential of becoming a powerful tool in the strong interaction dynamics. Therefore it is important to have reliable theoretical calculations for the process to reveal the underlying mechanism. A two body coupled channels approach is just about as exact as one can get at present. In ref.²) this approach is applied by considering

- l) as the initial state interaction a slightly modified form of the Dover-Richard potential3) fitted to the up-to-date $p\bar{p}$ data. The imaginary part strength W₀ needed a readjustment to W₀ = 6 GeV.
- 2) as the transition potential for $N\overline{N} \rightarrow \Lambda\overline{\Lambda}$ the K+K* exchange potential with the coupling constants obtained from kaon-nucleon scattering and the SU(3) symmetry and
- as the final state ΛΛ interaction the ω exchange plus the same annihilation potential as for the NN case. Modifications to this are also tested.
 The results of the basic model of ref.² are shown in figs. 1-3 for the total cross

The results of the basic model of ref.²) are shown in figs. 1-3 for the total cross section $\sigma(p\bar{p} \rightarrow \Lambda\bar{\Lambda})$, the differential cross section at a representative energy with the available data and for the polarization for a selection of energies. In ref.²) also the spin correlation coefficients are given. Except for the nearly linear rise of $\sigma_{tot}(p\bar{p} \rightarrow \Lambda\bar{\Lambda})$ at high energies and the backward peak in the $d\sigma/d\Omega$, this K+K* exchange model appears very good considering that no parameters have been fitted to the reaction in question. This is an indication that the dominant reaction mechanism may be a meson exchange, which then requires a particularly careful consideration, before any conclusions can be made of possible quark contributions.

Fig. 1 The total cross section $\sigma(pp \rightarrow \Lambda\bar{\Lambda})$ as a function of energy or momentum. The data from the compilation of Flaminio et al⁴).

Fig. 2 The differential cross section at the laboratory energy 882 MeV. The data from Jayet et al⁴).

Fig. 3 The polarization of $\overline{\Lambda}(\text{or }\Lambda)$ for four laboratory energies including the ones of the LEAR experiment¹).

References

1) P.D. Barnes et al., CERN/PSCC/81-69 and CERN/PSCC/82-57

- 2) J.A. Niskanen, Helsinki preprint HU-TFT-85-28
- 3) C.B. Dover and J.M. Richard, Phys. Rev. C21 (1980) 1466
- 4) V. Flaminio et al., CERN-HERA-84-01
 - B. Jayet et al., Nuovo Cimento <u>45A</u> (1978) 371

979