Proc. Sixth Int. Symp. Polar. Phenom. in Nucl. Phys., Osaka, 1985 J. Phys. Soc. Jpn. 55 (1986) Suppl. p. 984-985

5.16 Spin Alignment of ρ^{0} -mesons in Charged Current Antineutrino Interactions

V.V. Ammosov, A.E. Asratyan⁺, V.S. Burtovoy, A.G. Denisov, A.V. Fadotov⁺,
V.A. Gapienko, G.S. Gapienko, P.A. Gorichev⁺, V.I. Klukhin, V.I. Koreshev,
S.P. Krutchinin⁺, M.A. Kubantsev⁺, I.V. Makhljueva⁺, P.V. Pitukhin, V.I. Shekelyan⁺,
V.G. Shevchenko⁺, V.I. Sirotenko, E.A. Slobodyuk, Z.U. Usubov and V.G. Zaetz

Institute for High Energy Physics, Sepukhov, USSR +Institute for Theoretical and Experimental Physics, Moscow, USSR

The results on studying the spin alignment (tensor polarization) of ρ^{0} -mesons produced in the quark jets of CC antineutrino interactions are presented in this paper. The investigation of spin alignment of ρ^{0} -mesons produced in the process of quark fragmentation is the direct check of ρ^{0} -meson vector coupling with the fragmenting quarks (Fig. 1)¹⁻³). This, in its turn, should reveal in the correlation of ρ^{0} -meson spin with its momentum transfer with respect to the direction of the fragmenting quark motion. The expected yeild for the diagrams of the type shown in Fig. 1 is $\rho^{0}/\pi^{0} = 1^{3}$. Experimenal data used in this paper were obtained with Fermi-lab 15-Ft. bubble chamber⁴.

4.030 CC antineutrino events with the invariant mass of hadron W>2 GeV were selected to investigate the ρ^{0} -meson spin alignment, determined from the approximation of angular distributions of ρ^{0} -meson decay products using expression⁵):

 $dN/d(\cos\theta) \sim (3\rho_0 - 1) \cos\theta + 1 - \rho_{00}, \qquad (1)$ where θ is a polar angle between the direction of π^+ -meson momentum from $\rho^0 + \pi^+\pi^-$ decay and the axis \hat{Z} in ρ^0 -meson rest frame; ρ_{00} is a probability for ρ^0 -meson to have a zero spin projection on the axis \hat{Z} . The analysis was performed in two orthogonal systems: i) in the helicity system, where the axis \hat{Z} is the direction of ρ^0 -meson momentum; ii) in the transversal system, where the axis \hat{Z} is the direction of the normal with respect to the ρ^0 -meson production plane: $\hat{n} = qxp_{\rho}\circ/(qxp_{\rho}\circ)$, where $\hat{q} = \hat{p}_{\nu}-\hat{p}_{\mu}$ is the vector of antineutrino-muon momentum transfer.

The angular distributions of $\rho^{O-meson}$ decay products were reconstructed by approximating the $\pi^+\pi^-$ invariant mass (M) spectra:

 $dN/dM = BG(M) \cdot (1 + BW(M))$

in various intervals of decay angles, where BW(M) is the Breit-Wigner function⁶); BG(M) = C•exp(- β •M) is the parametrization of the combinatorial background under the resonant signal; C, α and β are the fit parameters. The invariant mass spectra were approximated in the mass region of 0.56<M($\pi^{+}\pi^{-}$)<1.16 GeV at z=E($\pi^{+}\pi^{-}$)/(E_V-E_µ)>0.4.

(2)

Since it was impossible to identify π and K-mesons unambiguously in this experiment, the arbitrary assignment of masses to the tracks resulted in the K*⁰-meson kinematic reflection in the $\pi^+\pi^-$ invariant mass spectrum. The contribution of K*⁰-meson distorting the final result of ρ^0 -meson spin alignment was checked using artificial events obtained with the LUND model⁷). Corrections for K*⁰-meson reflection in the spectrum of $\pi^+\pi^-$ invariant masses were introduced by the method proposed by Barth et al.⁸)

The angular distributions of ρ^0 -meson decay products for the helicity system are presented in Figs. 2a-c. Analogous distributions for the transversal system are shown in Figs. 2d-f. In order to study a possible correlation of ho^{0} -mesons and their momentum transfer with respect to the direction of the weak current the data were divided into two intervals, i.e. of small p^2 (<0.2(GeV/c)²) and large p^2 (>0.2 $(GeV/c)^2$. The behaviour of the angular distributions of ρ^0 -meson decay products is considerably different at small and large p2 of ρ^0 -mesons, which cannot be accounted for by the influence of combinatorial background under the resonant signal. Nor can it be explained by the influence of reflection from K^{*0} -mesons, since their bahaviour is weakly dependent on p². On the other hand, the observed behaviour of angular distribution of the ρ^0 -meson decay products is in good agreement with the prediction¹⁻³⁾. The analysis of angular distributions of these products points that the ρ^0 -meson spin does tend to be correlated with its transverse momentum. In this case ρ^0 -mesons produced at small momentum transfers in the direction of the current are highly probable to have the zero spin projection ($\rho_{00}{=}0.73{\pm}0.16$ > 1/3) on their momentum direction and a small probability of the zero spin projection ($\rho_{00}=0.00\pm0.06$ < 1/3) on the direction of the normal to the ρ^0 -meson production plane, respectively. The behaviour of angular distributions of ρ^0 -meson decay products in the region of p^2 > 0.2 (GeV/c)^2 indicates that the spin alignment of $\mathrm{\rho}^0$ -mesons possibly has an

inverse sign with respect to the spin alignment of ρ^{0} -mesons produced with small p2. However, as seen in Figs. 2b and 2e, angular distributions agree within the errors¹ with the absence of ρ^{0} -mesons spin alignment at $p_{1}^{2} > 0.2$ (GeV/c)². Figs. 2a and 2d presents angular distributions for whole p_{1}^{2} interval.

Proceeding from the validity of the assumption that the suppression of the definite spin states of vector mesons must result in the decrease of the yield of V (vector meson)/PS (pseudoscalar meson) (equal to V/PS = 3 in the case of equally probable realization of all spin states), in our experiment one should evidently expect the ratio $\rho^0/\pi^0 < 3$. The yield of ρ^0/π^0 versus Z obtained in this experiment is presented in Fig. 3. To determine the differential distribution of π^0 -mesons over z we used the isotopic relation

 $dN(\pi^{\circ})/dz = (dN(\pi^{-})/dz + dN(\pi^{+})/dz)/2$

Since the distributions of ρ^0 and π^0 -mesons are well described in the region of z > 0.3 by the exponential function, we used expression A·exp(B·z) to approximate ρ^0/π^0 vs z. The extrapolation for the values of z = 1 yielded $\rho^0/\pi^0 = 1.1\pm0.3$ for the directly produced mesons. The obtained value for V/PS does not exclude the possibility of ρ^0 -meson production in the fragmentation processes with the nonzero spin alignment.

References

- 1) J.F. Donoghue: Phys. Rev. D17 (1978) 2922.
- 2) A.V. Efremov and O.V. Teryaev: Preprint JINR P2-82-832, 1982.
- 3) R. Suaya and J.S. Towsend: Phys. Rev. D19 (1979) 1414.
- 4) V.V. Ammosov et al.: Nucl. Phys. B199 (1982) 399.
- 5) K. Schilling and G. Wolf: Nucl. Phys. B61 (1973) 381.
- 6) J.D. Jackson: Nuovo Cim. <u>34</u> (1964) 1644. J. Pisut and M. Ross: Nucl. Phys. <u>B6</u> (1968) 325.
- 7) T. Sjostrand: Comp. Phys. Comm. 27 (1982) 243.
- 8) M. Barth et al.: Nucl. Phys. B223 (1983) 296.

Fig. 1. The simpliest QCD-diagram for $q \rightarrow q'+p^{\circ}$ fragmentation.

Fig. 3. The ratio

 $[dN(\rho^{\circ})/dz]/[dN(\pi^{\circ})/dz]$ vs z: The straight line shows the result of the approximation of the yield ρ°/π° vs z by the exponent with the parameters given in the text.

Fig. 2. Distributions over the cosine of the polar angle of π^+ -mesons from the ρ° -meson decay, (a-c) in the helicity system, (d-f) in the transversal system, respectively.