Proc. Sixth Int. Symp. Polar. Phenom. in Nucl. Phys., Osaka, 1985 J. Phys. Soc. Jpn. 55 (1986) Suppl. p. 1000-1001

6.7

A new determination of the parity violating pion-nucleon coupling constant

G. Nardulli

Dipartimento di Fisica dell'Università, 70126 Bari, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy

Parity violations (P.V.) in nuclear physics have recently received considerable interest both experimentally¹) and theoretically²). A basic quantity is the parity-violating pion-nucleon coupling constant F_{π} ; by using P.C.A.C. and Current Algebra one can write

$$\mathbf{F}_{\pi} \equiv \mathbf{i} < \mathbf{p}\pi^{-} \mid \mathbf{H}_{\mathbf{p}\mathbf{V}} \mid \mathbf{n} > \sim 2/\mathbf{f}_{\pi} < \mathbf{p} \mid \mathbf{H}_{\mathbf{p}\mathbf{C}} \mid \mathbf{p} >$$
(1)

where H_{py} and H_{pC} are the parity violating and parity conserving weak, $\Delta S=0$, non leptonic hamiltonians. In the following we shall describe a new determination of F_{π} and its phenomenological consequences; a systematic study can be found elsewhere²). H_{PC} can be written as follows:

$$H_{PC} = \sqrt{2} G \sin^2 \theta_c (C_+ 0_+ + C_- 0_-) + \sqrt{2} G ((1 - 2\sin^2 \theta_w) (C_- 0_- - C_+ 0_+) - \sin^2 \theta_w / 3\Sigma C_- 0_-) (2)$$

where C_{\pm} , C_{α} are QCD coefficients (choosing as the onset of the scaling $\mu \approx 0.8$ GeV and $\Lambda_{\rm QCD} = 0.1$ GeV, one has $C_{\pm} = 0.77$, $C_{\pm} = 1.67$, $C_{\alpha} = (1.08, -0.01, -0.01, -0.27)$) and $\theta_{\rm c}$, $\theta_{\rm c}$ are the Cabibbo and Weinberg angles respectively. The local operators 0_{\pm} , 0_1 , 0_4 are given by (due to the smallness of C_2 and C_3 , 0_2 and 0_3 play no role):

$$O_{\pm} = 1/8 \left(\left\{ \left\{ \vec{u}\gamma_{\mu}s \ \vec{s}\gamma^{\mu}u \pm \vec{u}\gamma_{\mu}u \ \vec{s}\gamma^{\mu}s \right\} - u \rightarrow d \right\} - s \rightarrow c \right\} + \gamma_{\mu} \rightarrow \gamma_{\mu}\gamma_{5} \right)$$

$$O_{1} = 1/2 \left(\vec{u}\gamma_{\mu}u - \vec{d}\gamma_{\mu}d \right) \vec{q}\gamma^{\mu}q$$

$$O_{4} = 1/2 \left(\vec{u}\gamma_{\mu}\gamma_{5}\lambda^{\alpha}u - \vec{d}\gamma_{\mu}\gamma_{5}\lambda^{\alpha}d \right) \vec{q}\gamma^{\mu}\gamma_{5}\lambda^{\alpha}q$$
(3)

where $\overline{q} \Gamma q \equiv \sum_{q} \overline{q} \Gamma q$ and λ^{α} are colour matrices.

In previous calculations of F $^{3)}$ emphasis has been given to the so-called factorized terms which are proportional[#]to the matrix elements of scalar densities between nucleons; for istance, by making a Fierz transformation of the 0_4 operator, it is easy to show that one obtains the following contribution:

$$F_{\pi}^{\text{fact}} = 2\sqrt{2}/3 \text{ G } \sin^2\theta_{W} C_{4} 8/9 f_{\pi} m_{\pi}^{2} / (m_{u} + m_{d}) (d + f) \approx -1.19 10^{-7}$$
(4)

where $f_{\pi} = 0.95 m_{\pi}$, $m_{\pm} + m_{d_{\pm}} = 12$ MeV; d=-0.4, f= 1.3 are the d and f which supply SU(3) mass splittings ^u in the baryon octet. As for the contributions from the other operators 0_{\pm} , 0_{\pm} , our method consists in writing dispersion relations for their invariant amplitudes. We consider the contribution of the low-lying poles: the $1/2^{\pm}$ baryon octet, the $3/2^{\pm}$ decuplet and the $3/2^{\pm}$ octet as well as the continuum integral, parametrized à la Regge. In Table I we give our calculated different contributions to F_{π} ; their sum is

$$F_{r} = (2.1 - 5.5) \cdot 10^{-7}$$
(5)

Table I. Different contributions to F_{π} · 10⁷.

factorized contribution	1/2+	3/2+	3/2-	continuum	
-1.19	-0.98	+0.41	-0.12	3.96 - 7.36	

The main difference between our result in eq. (5) and previous findings³⁾ is in the sign of F_{π} that turns out to be opposite ($F_{\pi} \equiv -f_{\pi}^{\text{DDH}}$). Nevertheless we find that a positive and small value of F_{π} : $F_{\pi} \approx + 2 \cdot 10^{-7}$ is compatible with experimental results of P.V. in the systems ¹⁸F, ¹⁹F, ²¹Ne, pa elastic scattering at 46 MeV, low energy pp elastic scattering, provided that the tensorial coupling constant ³⁾ hl'is large: hl' $\approx \rho$ -150.10⁻⁷. In Table II we give experimental results, fitted values and theoretical expressions for different systems. Even though we are not able to extend our calculation of F_{π} to the ρ and ω P.V. exchanges, we may say that large values of h_{ρ}^{1} and h_{ρ}^{2} , as used in Table II, are not surprising, as only these two couplings are not constrained by Ward identities and approximate Vector Meson Dominance (VMD) to be small⁵) (exact VMD would give $h_{\rho}^{o} = h_{\omega}^{o} = h_{\rho}^{1} = h_{\omega}^{1} = 0$.

Table II	. Comparison between experimental results (circular polarization P , a-
	symmetries A and A) and theoretical expressions for P.V. in different
	systems, Data and nuclear matrix elements are from Refs. 1) and 4).
	Fitted values are for $\overline{h}_0^0 \simeq h_0^0 + 0.6 h_0^0 \simeq h_0^0 + h_0^0 \simeq -10; \overline{h}_0^1 \simeq h_0^1 + 1.74$
	$h_{\omega}^{1} \approx h_{\rho}^{1} + h_{\omega}^{1} \approx -15; h_{\rho}^{15} \approx -150; h_{\rho}^{2} \approx -30; \overline{F}_{\pi} = F_{\pi} + 0.11 \overline{h}_{\rho}^{1} + 0.024 h_{\rho}^{1}$
	$\simeq -3.25$. Units are 10^{-7} .

System	Measured value	Fitted value	Theoretical expression
pp	A =-2.50±0.75	-2.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
pα	A =-3.34±0.93	-2.5	
18 _F	P _γ =(-4.2±7)10 ³	$\pm 14.5 \cdot 10^{3}$	
19 _F	A _γ =-740±190	-620	
21 _{Ne}	P _γ =(8±14)10 ³	$\pm 21 \cdot 10^{3}$	

References

- 1) E.G. Adelberger et al.: Phys. Rev. C27 (1983) 2833.
- 2) G. Nardulli: Phys. Rev. D31 (1985) 2223.
- 3) B. Guberina, D. Tadic' and J. Trampetic: Nucl. Phys. B152 (1979) 429; F. Buccella, M. Lusignoli, L. Maiani and A. Pugliese: Nucl. Phys. B152 (1979) 461; B. Desplanques, J.F. Donoghue and B.R. Holstein: Ann. Phys. (N.Y.) 124 (1980) 449.
- 4) J. Lang et al.: Phys. Rev. Lett. 54 (1985) 170.
 5) G. Nardulli and G. Preparata: Phys. Lett. 137B (1984) 111.

1001