Proc. Sixth Int. Symp. Polar. Phenom. in Nucl. Phys., Osaka, 1985 J. Phys. Soc. Jpn. 55 (1986) Suppl. p. 1022-1023

7.2 Energy Dependence of the j-Effect in Radiative Capture of Polarized Nucleons

G. Longo

INFN Sezione di Bologna, Dipartimento di Fisica dell'Università Via Irnerio 46, 40126 Bologna, Italy

It has recently been pointed out¹⁾ that polarized nucleon capture data indicate a sensitivity to the j_{+} value ($j_{+} = l_{+} = 1/2$) of the single particle final state for a given l value. Namely, it was shown that the b_{k} coefficients, in the absence of spin distortions, should obey the relationship

$$b_{L}(j_{l})/b_{L}(j_{l}) = -(l+1)/l$$
(1)

and this conclusion (hereafter called j-effect) was found to be consistent with the signs of the b_2 coefficients known from (p , γ) data at isolated energies where E1-capture is dominant.

In the present work the direct-semidirect (DSD) model is used to investigate the *j*-effect for all k and in the whole energy region of the giant multipole resonances. Here some results for radiative capture of 5-35 MeV neutrons by 40 Ca, are presented. Calculations are performed²⁾ taking into account the IS and IV GQR's and the ISGOR. The single particle final states (and binding energies) considered are : the ground state f 7/2 (8.36 MeV), the first excited state p 3/2 (6.42 MeV) and the *j*_states

p 1/2 (4.42 MeV), f 5/2 (3.48 MeV). In Fig. 1 the function

$$B_{sum} (E, \theta) = \sum_{k=1}^{6} b_{k} (E) P_{k}^{1} (\cos \theta)$$
(2)

is plotted for capture to the f, states at 11 MeV (upper) and 15 MeV (lower) neutron incident energy and compared with the experimental points³⁾ for capture to the f 7/2 state. The opposite signs of the calculated functions B_{sum} are consistent with eq.(1). Due to the difference in the binding energies of the levels considered, $E_n = 11 \text{ MeV}$ is near the ISGQR peak for capture to the f 7/2 state and below it for f 5/2. Where E1 radiation dominates, the sum (2) reduces to its second term and the corresponding

Fig. 2. B for the f 7/2 state

1022

Fig. 3. B_{even} for the f 5/2 state

Fig. 4. B_{odd} for the p 3/2 state

curves are nearly symmetric. The asymmetry reveals the presence of E2 radiation. Qualitatively similar curves are obtained in the region of the IVGQR (25-30 MeV) as can be seen from Fig. 2. It should be noted however, that at ~ 25 MeV the positive values for B_{sum} (f 7/2) are pushed toward smaller angles. Similar results are obtained for capture to the p_{+} states. Therefore, for angles between ~ 30° and 90° the model predicts positive values of B_{sum} both for capture to j_{+} and j_{-} states.

The b-coefficients contain different multipole strength and this limits the possi= bility of using B_{sum} for studying the *j*-effect. Therefore two functions, which can be related to data from measurements at two supplemental angles, are here introduced :

$$B_{\text{even}}(E,\theta) = \sum_{n} b_{n}(E) P_{n}^{1}(\cos\theta) / [1 + \sum_{n} a_{n}(E) P_{n}(\cos\theta)]$$
(3)

$$B_{\text{odd}}(E,\theta) = \sum_{m} b_{m}(E) P_{m}^{1}(\cos\theta) / [1 + \sum_{n} a_{n}(E) P_{n}(\cos\theta)]$$
(4)

with n = 2,4,6 and m = 1,3,5. Calculations predict positive and negative values of B for capture to j_{+} and j_{+} states respectively (see Fig. 3 for f 5/2). This rule holds in the whole energy-angle region for the 4 levels considered, except for the p 3/2 state where, at high energies, near zero-positive values of B even, are obtained.

The rule mentioned agrees with the sign, though values calculated here of the j-ef=fect are greater than those of eq. (1). Figure 4 (p 3/2 state) shows greater varia=tion from zero values at the peaks of IS and IV GQR's thus clearly indicating their positions. Taking into account the difference in binding energies the corresponding j_+ surfaces can be considered symmetric with respect to the zero plane. Calculated

 J_{\pm} surfaces can be considered symmetric with respect to the zero plane. Calculated B_{odd} agree with the sign and indicate values of the *j*-effect close to those of eq.(1).

The present investigation shows that : 1) the energy-variation of the *j*-effect is closely related to the relative strength of different multipole contributions at a given energy; 2) the predictions of the DSD model together with measured values for the *j*-effect, can be useful as a tool both in assigning *j*-values to final states and in obtaining information about the strength and position of GMR's.

Thanks are due to ENEA, Istituto di Bologna, where preliminary calculations for this work were performed, and particularly to Dr. F. Fabbri for assisting in program= ming the required calculations.

References

1) R.G. Seyler and H.R. Weller : Phys. Rev. C30 (1984) 1146.

- 2) G. Longo and F. Fabbri : Phys. Lett. 84B (1979) 285.
- 3) C.M. Fitzpatrick, Ph.D. thesis, Duke University, 1983.

1023