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Potentials among the octet and decuplet baryons are calculated
under the product ansatz in the SU(3) Skyrme model. The poten
tials generally agree with conventional meson-exchange potentials
at large distances. Some pecuhality is, however, observed stemming
from the commonly-used SU(3) quantization using rotational col
lective coordinates. The spin-isospin independent central potential
is weakly attractive in intermediate range due to the strong chi-
rcil symmetry breaking term. The SU(3) model yields the isoscalar
spin- dependent potential that does not appear in SU(2) models.

§ 1. Introduction

The Skyrme model,^) based on large Nc limits of quantum chromodynamics, has
attracted much interest as a chiral soliton model of baryons. Under SU(2) treatments,
the model has been phenomenologically successful in the general description of baryon
static properties^) and of the nucleon-nucleon ( NN ) interaction.^'"') There are, however,
some prominent phenomenological failures of the SU(2) model; the small nucleon axial
coupling constant and the absence of central attraction in the NN interaction. The latter
is crucial, so the model is not yet considered seriously as a useful model in nuclear physics.

The Skyrme model eJso has been extended to the SU(3) formulation for description
of the static properties of the baryons, generally providing somewhat better agreement
with the data than the SU(2) results.®) Some curious consequences, however, have been
shown to emerge from the SU(3) model such as an appreciable strangeness content of the
nucleon. It would be then interesting to examine baryon-baryon interactions in the
SU(3) model. Our calculation reported here is the first of such examinations and is meant
to be exploratory. In this spirit, we make the same assumption as that in many previous
SU(3) calculations of baryon static properties,®) the SU(3) structure by embedding the
SU(2) chiral fields, as shown in Eq.(2) below. As in the SU(2) formulation,^'"') we express
the baryonic states by the collective rotational coordinate method and obtain adiabatic
baryonic potentials under the product ansatz.

In the following, we describe briefly the SU(3) formulation of the Skyrme model
and the baryon interactions in Sections 2 and 3, respectively. Details of our results are
presented in Section 4, and the summary of our work is given in Section 5.

§ 2. The SU(3) Skyrme Model

The Skyrme Lagrangian is expressed as a sum of the kinetic energy term , (£2)1 the
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quartic term, (£4), the chiral symmetry breaking term and the Wess-Zumino-

Witten term, (Xwzw):

£ — y d^r[C2 + £4 + + ̂wzw )
£2 = (16), C, = ̂Tt{[L„L,f},

£*sb + + [ft _ 2}

iW rXwzw = iVcF = J d'Li''"""'Ti{L,L,L,L,Lo^},

where = U^dfJJ denotes the left-handed current for an SU(3) matrix U, is the
pion decay constant, and e is a parameter related to the vector—meson coupling constant.
m-g, m,i and mfc denote the masses of pion, tj- and K- mesons, respectively.

The static chiral field Uo is assumed to have the structure that the hedgehog SU(2)
matrix Usv{2){^ = exp(ir • fF{r)) is embedded in the SU(3) space:

Uo=( "V (2)

The SU(3) baryonic states are then constructed from the rotational states AUQ{r)A'^ with
the SU(3) collective coordinates A. The collective coordinate A is parametrized as

^  t z tA = exp(--aA3) exp(--^A2) exp(--7A3) exp{—-i>Xi)

i  iX exp(-^a'A3) exp(-^;0'A2) exp(-^7'A3),

where, Aa denotes the SU(3) Gell-Mann matrix. We note that the left multiplication
of A by the SU(3) element generates a state in SU(3), while the right multiplication by
SU(2) element induces the rotation in the configuration space. Thus, the left and right
transformations of A are related to u-spin and spin transformations, respectively. The
Euler angles a, 7 and u in Eq. (3) correspond to the Euler angles in the u—spin space,
and a', /?' and 7' those in the spin space. Hereafter, a, b and c are used as those of the
SU(3) indices with values from 1 to 8; i, j and k the SU(2) indices with values from 1 to
3.

Following the canonical quantization rule for the Euler angles, we obtain the spin and
u-spin differential operators as

=  and - AA^ = ̂Xah, (4)
respectively, in terms of the spin operator J and the u-spin operator I. J and I satisfy
the commutation relations
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^fabJci
\- A (5)[Ji,A] = A^, [U,A]^—^A,

where fabc are the SU(3) structure constants. The adjoint representation of A is defined
as Dai{A) = Tr{Aa^A,d^}/2. with the first index a corresponding to the u-spin and the
second index j to the spin. This representation yields the fundamental representation of
5{7(3) X 517(2), equivalent to the SU(6) quark model.®) For example, the unnormalized
quark states with spin up are given by

= -(T>(n)++I>(n')+- cos 1/ + T>(fi)+_I>(n')—),

V'd.T = cos f + D{n).-D{Q').-), (6)
V's.T = — sini/,

where D{U)ij and denote the jD-function of spin 1/2 with the Euler angles Q
(a/?7) and (a'/?'7'), respectively. As the Skyrme model is the classical, the baryon
states are expressed in terms of totally symmetric tensors in SU(6). The octet state has
a [21] X [21] symmetry in SUflavor (3) x SUspin(2), and the decuplet state a [3] x [3]
symmetry. For example, the proton state is represented as

V'proton.T = - cos u{D{Q)^+D{Q')^- COS v + D{Q)+-D{Q') —)
= cosi/Viu.!,

which is proportional to |,being in the state of 1/2 spin, 1/2 isospin, and 0 strangeness.
The Euler angle 1/ does not appear in the SU(2) model and represents an SU(3) degree of
freedom as shown in Eqs. (3), (6) and (7).

§ 3. The Baryon Interaction in the SU(3) Model

In order to extract the baryon-baryon potentials, we use the product ansatz for SU(3)
matrices. The ansatz is known to be a poor variational ansatz particularly at short dis
tances, but since no practical, alternative method is presently available, we have decided
to use this conventional method. Our potentials will be therefore generally of semiqual-
itative significance but are expected to be reasonably reliable in the asymptotic regions.
This procedure has the advantage that the potentials may be compared with our SU(2)
results previously carried out in a similar way.^) Under the product ansatz, we have

U{r, Al, A2, R) = U2{?- A2)C/i(r + |, Ai) (8a)

C7i(r + f ,^1) = AiC/o(r + ̂)aI |, A2) = A^U^i?- |)a5, (86)
where Ai and A2 are rotational collective coordinates.

We obtain the interaction Hamiltonian by substituting Eq.(8) into Eq.(l) and cleissify
various interaction terms according to the spin-isospin degree of freedom. Classification
is done using the adjoint representation, Z)ij(A|A2) = 'Vx{TiA\A2TjA\A\\/2 of the
combined collective coordinates as A|A2, where the indices i and j denote the spins for
Al and for A2, respectively. In our formalism, the SU(2) soliton is embedded in the SU(3)
as in Eq.(2), and the domain of Dij is thus effectively restricted to SU(2). Accordingly,
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while the actual values of the matrix elements dilfer from those in the pure SU(2) case, the
structure of the interaction terms is formally similar to the SU(2) structure. We refer the
reader to our previous SU(2) work^) for a detailed description of the formahsm presented
in this section.

The interaction terms are expressed in terms of integrals of the left and right currents
that consist of the chiral fields and the D^'s. The expressions are simplified using the
tensor decomposition

Dij{A)Dki{A) - ̂6ijDk,{A) - \6k,Dij{A) + ̂8i,Dkj{A) + ̂hjDi,{A)
+ Higher order tensor terms, (9)

by exploiting the fact that the presentation is the second order. Note that Dij{A\A2) =
Dai{Ai)Daj{A2), because Dij{A\A2) is a representation of SU(3). Another major tech
nique used for simplification concerns the left current Lk]

Lk = AlA^LkiUoif- j))A\A2 - Rk{Uo{?-\-1))
= i[A\A2TiAlAiLi'^ - )]
= iXa[Dai{A\A2)Vi'^ - 6aiRf\

Here, the domain of Dai{A\A2) which is restricted to the SU(2) or SU(3) indices are
actually restricted to the SU(2) indices, because the adjoint representation Dab is trun
cated with the SU(2) values of the left and right currents. Accordingly, the first and

second indices of Dai{A\A2) again correspond to the spin of the A\ and A2 skyrmions,
respectively. The Wess-Zumino-Witten term Twzw does not contribute to the adiabatic
potential because the terms in Lwzw includes time derivative even after integration on
5-dimensional disk.

Using Eq. (3), we finally obtain the expressions of the interactions as

U4 = ̂  y d^r[2{RRRi) + 2{LLLR) + {RRLL) + (RLRL) + (RLLR)] (116)
VxSB = - Y j d\[{Tnl + ml){U+ - l)o{U. - l)o

3

+ iu+ - ̂)jiU- - \)k{{2ml + m]- m\^) ̂  Dij{A2)Dik{Ai)
1=1

1  1 ^
+ {^rnl + ml + -m\) ̂  Aj(^2)Aifc(^i)

1=4

+ {ml + m]^)Dsj{A2)Dsk{Ai)}] (11c)

where the subscripts of V identify the corresponding lagrangian terms in Eq. (1). Fur
thermore, (AB) and (ABCD) stand for A^Bj and A^BjClO^ - A)B[C\d[, [where

(-^i) denotes R^^^^Dij{A\A2) (I>y(a|A2)T'/^^)], respectively; {U± - l)j denotes
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Tx{Tj{U± - l)/2} for j = 0,1,2 and 3.
The potenticJ between specific baryons is obtained by taking matrix elements of

Dia{A). For example, the nonzero matrix elements between the nucleons are tabulated
in Table I.

Table I. Nonzero matrix elements of the adjoint representation Daj for spin
up nucleon states.

£>13 — iD23 ^33

<p,p> <p,n> <p,p> <n,n> <p,p> <n,n>
-7/30 7/30 -7/30 7/30 -1/10 -1/10

§ 4. Numerical Results and Discussion

Equation (11) shows some of characteristic features of the baryon interactions in the
SU(3) model;

(i) the radial form of each potential term is independent on the baryon configuration.
(ii) the spin dependent terms have numerical factors different from the SU(2) results.

The difference stems from the enlargement of the spin space to the u-spin space,
and the matrix elements of Daj for baryon states are modified. For example, the
nucleon amplitude in the baryon multiplet is reduced following the reduction of the
the nucleon matrix element Daj{A) from —l/3T,(jj [ SU(2) ] to —7/30Ti(Tj [ SU(3)
]. The nuclear spin-spin and tensor potentials contributed by £2 ''■nd £4 are thus
reduced by 51 % in magnitude.

(iii) The isoscalar spin-spin and tensor terms emerge that do not appear in the pure
SU(2) model. The new terms are generated because Daj{Ays for a > 4 no longer
vanish. The isoscalar terms appear in all baryon interactions. Paticularly, the
general NN potential form in the SU(3) model is

= K + (V;° -h ■ r)(or • a) + {V° + V^r ■ t)Su. (12)

Note that, when the chiral symmetry breaking term is neglected, Vsg/ygs =
V^/V^ = 3/49 for the NN potential from Table I.

(iv) The symmetry breaking term contributes appreciably, reflecting the fact that the
SU(3) symmetry is not well conserved. For example, the first term in Eq. (11c)
is incresised by a factor of about 8 by the inclusion of m,j, compared with the
SU(2) case. The increase enhances the attraction of the central potential. On the
other hand, for example, the isovector spin-dependent NN potential changes little
compared to the pure SU(2) model, reflecting the fact thast the SU(2) symmetry
remains well conserved.

The effective potential for each BB channel can be obtained by diagonalizing of the
potential matrix. In the present analysis, the chiral symmetry breaking term is treated
perturbatively. Figure 1 illustrate some features of the NN and NA potentials in the
SU(3) model. In this calculation, we adopt the parameter set refered to Case III in ref.4.
That is, the experimental data are used for the meson masses (m,r) xtik and ), and for
the pion decay constant The parameter e is taken as 3.4.

Figures show the following characteristics on the NN potential:
(i) In the spin-isospin independent potential ( Fig. 1(a) ), the xSB term is strongly

attractive and has a range longer than that of the Skyrme term. Consequently, the
resultant potential is only weakly attractive in the region beyond r = 2 fm, not
sufficient to reproduce the observed attraction.
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Fig. 1. The calculated
NN- and AN- potentials,
(a) is the spin-isospin inde
pendent central potential in
both SU(2) and SU(3) mod
els. (b) and (c) are the spin-
spin ( Fgg ) and tensor parts
(  ) for the NN-potential,
respectively, (d) is for the
singlet and triplet s-state (
^5 and ) AN- potentials,
and the spin-spin direct and
exchange potentials ( and
vS" )■

(it) In the spin-isospin dependent potential( (b) and (c)), the strength is reduced
compared with the SU(2) case, following the reduction of the matrix element
< AT I I> I A" > by 51 %.

(Hi) In the outer region (r 2.0 fm), the potential is consistent with the Paris potential.
The AN potential is divided into the direct and exchange F®* parts, corresponding

to T]- and iii-meson exchange, respectively. Each part further consists of three terms:
spin-independent central, spin-spin, and tensor terms. In Fig. Id), we illustrate the AN
potential of the triplet and singlet s-states, as well as the spin-spin dependent potentials (

and Vg®* ) in the direct and exchange parts as a representative case. Our AN potential
agrees rather well with the conventinal meson exchange SU(3) potential,®^ including the
relative strengths and signs of various terms. An exception is the asymptotic behavior
of the potential that is governed by the pion mass instead of the ;;-meson and kaon
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masses. This peculiarity is a consequence of the simple SU(3) strucrure of the static
matrix Uq assumed from the outset, as shown in Eq. (2). Our calculation exphcitly
shows a shortcoming of this relative popular assumption. The otherwise good agreement
with the meson-exchange potential indicates, however, that the use of Uq structure more
agreeable to SU(3) symmetry breaking would remove the peculiality.

§ 5. Concluding Remarks

The adiabatic baryon potentials are obtained in the SU(3) Skyrme model under the
product ansatz using the rotational collective coordinates. The potential in all channels
are found to be generally consistent with the conventinal meson-exchange potentials,
including newly derived isoscalar spin-dependent terms. This is our major result.

When we compare the potentials with our previous SU(2) calculation carried out using
the same method, we find that the most significant feature of the SU(3) model is the large
contribution from the chiral symmetry breaking term. The term provides a weak NN
attraction, giving hope that inclusion of distortion effects®^ may increase the attraction
so that it compares more favorably with the observed strength.

The large contribution of the chiral symmetry breaking term raises, however, the
question on the adequacy of our quantization procedure that implicitly assumes that there
is no symmetry breaking. Furthermore, the peculiar asymptotic radiaJ dependence in our
AN potential explicitly shows that the commonly-used, simple SU(3) structure of Eq. (2)
is inadequate. A recent proposal, the bound strange-meson approximation,^") carries out
the SU(3) quantization explicitly breaking the SU(3) symmetry from the outset. Perhaps
our calculation should be repeated to examine effects of such a quantization procedure.
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