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It is usually assumed that neutron-optical phenomena are adequately described by a one-body Schrédinger equation
containing a complex optical potential that is given by the average value of the Fermi pseudopotential. The main problem
with this elementary approach is that it only includes the attenuation of the neutron wave function by absorption, and
neglects the often more important contribution from diffuse scattering. We show how this problem is resolved within the
rigorous theory of dispersion by taking local-field effects properly into account. We also indicate the importance of
corrections for local-field effects and electromagnetic interactions in the accurate determination of coherent scattering

lengths by neutron-optical experiments.
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§.1. Introduction
The theory of thermal neutron scattering in condensed

matter distinguishes four kinds of scattering processes:

. coherent elastic,

. coherent inelastic,

. incoherent elastic,

. incoherent inelastic.
The coherent elastic scattering represents the familiar
optical phenomena of reflection, refraction, diffraction,
and interference. The other three types of scattering play a
secondary role in neutron optics and are referred to
collectively as diffuse scattering.
The characteristic property of coherent elastic scattering is
that it is not accompanied by any change in the microscopic
state of the system and, hence, can be described by a one-
body Schrodinger equation,”

{—KA +V(r)}//(r) =FEy(r), (1.1)
2m

in which m is the neutron mass and V(r) the optical
potential that represents the effective interaction of the
neutron with the system. The neutron wave function yAr)
is called the coherent wave and provides a formally exact
description of the coherent elastic scattering and, hence, all
neutron optical phenomena. The optical potential is
complex, and its imaginary part describes the attenuation
of the coherent wave in the medium by both diffuse
scattering and absorption (e.g. radiative capture).

It is important to recognize that the optical potential ¥(r),
and hence the coherent wave yAr), are macroscopic
thermodynamic quantities. Thus, these quantities depend
only on the variables (temperature, pressure, etc.) that
define the macroscopic state of the system and are
independent of the instantaneous positions of the atoms of
which the system is composed. In other words, the system
behaves like a continuous macroscopic medium as far as
the coherent elastic scattering is concerned. In a
homogeneous system (such as a gas, liquid, or amorphous
solid) V(r) is constant, independent of r, while in a crystal
J(r) is a periodic function of r with the same periodicity as
the lattice. Outside the system, on the other hand, /(r)=0.

Thus, the macroscopic Schrodinger equation (1.1)
describes neutron-optical phenomena in terms of the
collision of the neutron with a potential barrier.

From a theoretical point of view, neutron optics divides
naturally into two parts:

(1) the theory of dispersion,

(2) thetheory of reflection, refraction, and diffraction.
Part 1 is concerned with the derivation of the macroscopic
one-body Schridinger equation (1.1) from the underlying
microscopic many-body Schrodinger equation, and with
the calculation of the complex optical potential ¥(r) for the
particular material of interest. Part 2 is concerned with the
solution of (1.1) subject to boundary conditions appropriate
to the experimental arrangement of interest.

The purpose of this paper is to present a critical analysis
of the elementary theory of dispersion, which forms the
basis for most work on neutron optics, and a brief non-
technical discussion of the rigorous theory of dispersion
that must be used in situations where the elementary theory
is inadequate. The theory of reflection, refraction, and
diffraction is dealt with in Ref. 1 and will not be discussed
further here.

§.2. Elementary Theory of Dispersion
§.2.1  Optical potential

In the elementary theory of dispersion it is assumed that
the optical potential is given by the equilibrium value of the
Fermi pseudopotential:

2
V<r>=<zm5<r_m>_ 2.1
i m
Here, r; is the position of the i-th atom, 4; is its bound
coherent scattering length, and the brackets {...) denote a
thermodynamic average. For a homogeneous system (such
as a gas, liquid, or amorphous solid), the optical potential
then has a constant value given by

V(r) = (Z’Z’J pb,

in which p is the number of atoms per unit volume and b is
the average bound coherent scattering length per atom.

(2.2)
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In general, the scattering length is complex,
b=>b'-ib".

Since the imaginary part of the optical potential describes
the attenuation of the coherent wave in the medium, it is
necessary that 5”> 0. On the other hand, the real part of the
scattering length may be either positive or negative. It is
found experimentally that 4> 0 for most nuclei, which
means that the optical potential is usually repulsive.

{(2.3)

$.2.2  Index of refraction
The index of refraction is defined as

n=K/k, (2.4)

where X is the wave vector in the medium and & the
corresponding wave vector in vacuo. Energy conservation
then gives

2 7- 2
E:&+V:(Z_k)_’ (2.5)
2m 2m
so that
) 14
n=1-—. (2.6)
E

Using the expression (2.2) for the optical potential, we then
obtain the familiar result

()

(2.7)

Although the above derivation may seem plausible to
those already familiar with the Fermi pseudopotential in
the context of Born approximation treatments of thermal
neutron scattering in condensed matter, its validity in the
present context is by no means obvious. In fact, the
expression (2.7) for the index of refraction has some
serious defects, which will become clear in the next section.

§.2.3  Optical theorem

Suppose a beam of neutrons with wave vector k is incident
on a slab of material of thickness d. It then follows quite
simply from the solution of the Schrodinger equation (1.1)
that the fraction of incident neutrons that are transmitted by
the slab is given by the expression

T = exp(—ud),

in which the attenuation coefficient is of the form

(2.8)

u=2kn", (2.9)

where n” is the imaginary part of the index of refraction (n
=n’+in”). On the other hand, we also know that

U= po, (2.10)

where ¢ is, by definition, the total collision cross section
per atom. A comparison of the above two expressions for x
then gives the optical theorem

(2.11)

(ZkJ ;
o, =|—|n"
p

Using the elementary expression (2.7) for the index of
refraction, we find that

(2.12)

where K’= n'k is the real part of the wave vector in the
medium. This result is clearly incorrect because the
right-hand side of the equation is merely the ‘1/v law’ for
the absorption cross section, while o should - include
contributions from both absorption and diffuse scattering.

Thus, the elementary theory of dispersion violates the
optical theorem in the sense that it only includes the
attenuation of the coherent wave in the medium by
absorption and neglects the often more important
contribution from diffuse scattering. In addition, since the
elementary theory gives the wrong answer for the
imaginary part of the index of refraction, it presumably also
gives the wrong answer for the real part. These defects are
overcome in the rigorous theory of dispersion which is
discussed in the next section.

§.3. Rigorous Theory of Dispersion
§.3.1  Ewald equations

The rigorous theory of dispersion'-" begins by
considering the medium from a microscopic point of view
as a system of atoms in vacuo. When a neutron with wave
vector k is incident on the system, each atom becomes the
source of a spherical scattered wave. Hence, the total wave
function at any point inside or outside the system is the sum
of the incident plane wave plus the scattered waves from all
the atoms. The essential point to note is that the ‘local field
that generates the scattered wave from any one atom
includes, not only the incident wave, but also the scattered
waves from all the other atoms. This represents a problem
in the multiple scattering of waves, and is described by a set
of coupled equations that are analogous to the Ewald
equations in ordinary optics.

)

$.3.2  Extinction theorem

The central problem in the rigorous theory of dispersion
is to prove the extinction theorem which asserts that on
average the scattered waves inside the medium interfere
with each other in such a way as to extinguish the incident
wave and replace it with a new wave that propagates with a
different wave vector K. This new wave is the coherent
wave that we introduced earlier, and the fluctuations of the
total wave function about this average represent the diffuse
scattering.

The extinction theorem is proved by finding an
appropriate self-consistent solution of the Ewald equations,
and the condition for self-consistency is that the index of
refraction is given by the expression

4
112:1+(k—72r)pF, (3.1)
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where F'is the scattering amplitude per atom in the forward
direction.

The quantity F is most easily calculated by treating the
system as a static configuration of atoms and then taking
the appropriate thermodynamic average over all such
configurations. Within this static approximation one then
finds that for a monatomic system,

_f
1-J’

where [ is the forward scattering amplitude for a single
isolated atom and J is the local-field correction,

J = of [exp(ik-r)G(r)[g(r) ~1]dr+O(f?).

(3.3)

(3.2)

Here, g(r) is the pair correlation function and G(r) the
retarded Green function,
eikr
G(r)=—. (3.4)
r

The integral (3.3) for the local-field correction expresses
the interference between the incident plane wave exp(ik-r)
and the spherical scattered wave G(r), and this interference
effect vanishes only in a system such as an ideal gas where
the positions of the atoms are statistically independent and

g(r)y=1.

§.3.3  Optical theorem

When the rigorous expression (3.1) for the index of
refraction is used in the optical theorem (2.11) with
F=F +iF’, we get

o-()r

where K’ = 1’k is again the real part of the wave vector in
the medium. This is now the familiar form of the optical
theorem in quantum mechanics.

(3.95)

§.3.4  Scattering amplitude versus scattering length

The neutron scattering community often uses the terms
‘scattering amplitude’ and ‘scattering length’ as if they were
synonymous. In fact, they are different quantities and, in
the present context, we shall see that it is necessary to
distinguish very carefully between them.

In general, the scattering amplitude / is defined as the
amplitude of the scattered wave (3.4) from a single isolated
atom. The scattering length & is then defined in terms of
the low-energy limit of /by the relation

g/ =-b

(3.6)

It is found experimentally that the real part of fis negative
for most nuclei. As a result, it is conventional in neutron
physics to include the minus sign in (3.6) so that b’ will be
predominantly positive.

It can be shown from the partial-wave expansion of the
scattering amplitude that for small %,

f ==b+ikb* + O(k?). (3.7)

The k* term includes the effective-range correction from
the s-wave phase shift plus an anisotropic contribution
from the p-wave phase shift. With b =5" —ib” and

f=/ +if”, we then get
f'==b"+k(2b'b")+O(k?),
fn = bu +k(b:2 —b"2)+0(k2).

According to the optical theorem (3.5), the total collision
cross section of an isolated atom is given by

&, = (4—ﬂ)f = (4—”) b" +4m (b —b"*) + O(k).
k \ k.

(3. 9)

We also know from quantum mechanics that the scattering
cross section is of the form

o, =4x|f[ = 4np| [1—2kb” +O(k2)]. (3.10)

Hence, the absorption cross section is given by

s - _4_7_[_ ml1 _ ” 2
aa—o,—as—(k)b [1 2kb" + O(k )].
(3.11)

Note that, at least to order &°, the absorption cross section
depends only on 4”, and o, =0 if b” = 0.

In general, b'~5 fm and k = 4 A-! for thermal neutrons.
Since o, < o; for most nuclei, it follows that

b" /b <kb' ~2x107*,

(3.12)
kb" < (kb')* ~4 x 1078,

Thus, it is clear that for most practical purposes,
f! — _bl

(3.13)
fll - bu +kb’2.

and

o, =4nb",

g, = (i@) b".
k

It is evident that for thermal neutrons the main difference
between the scattering amplitude and the scattering length
is in their imaginary parts. The quantity 4” only describes
the attenuation of the wave function by absorption while /”
describes the attenuation by both absorption and scattering.

In the derivation" of the Fermi pseudopotential (2.1) it is
assumed that /= —b. We now see that this is, in fact, an
excellent approximation for /7, the error being typically of
the order of 10-¥, but it is a very bad approximation for /"
because kb’%is usually at least as large as 4” and is often
much larger.

(3.14)
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$.3.5  Local-field correction

We saw in Sec. 3.2 that, as a result of local-field effects,
the scattering amplitude 7 of an atom in a material medium
is different from the scattering amplitude / of an isolated
atom. It will be seen later that the local-field correction J
<107, Hence, it follows from (3.2) that, to lowest order,

F'=-b'(1+J"), (3.15)
and
F"=b"+kb"” -b'J", (3.16)
in which
J=J +iJ" = pb’jexp(ik-r)G(r)[l‘g(r)]d"-
(3.17)

The imaginary part of J can be expressed in the alternative
form?

_
4

where S(q) is the static structure factor,

J" I[l—S(q)]dQ, (3.18)

S(g) = 1+pjexp(iq -r)[g(r)—1]dr. (3.19)

Here, q = ko — k is the momentum transfer in units of 7 in
a collision where the incident and scattered wave vectors
are ko and Kk, and the scattering is elastic ( ko = k). The
integral (3.18) is then taken over all directions of k.

Using the results (3.16) and (3.18), we now find that, to
lowest order, the optical theorem (3.5) gives

4 4
o F”:(—jb” b [ S(g)dQ.
o (k) )Yt s@

(3.20)

Here, the first term on the right-hand side is the absorption
cross section, and the second term is the total coherent
scattering cross section in the static approximation. When
the effect of spin and isotope disorder is taken into account,
the right-hand side of (3.20) also includes the incoherent
scattering cross section.” Thus, the rigorous expression
(3.1) for the index of refraction describes correctly the
attenuation of the coherent wave in the medium by both
absorption and diffuse scattering.

§.4. Experimental Determination of Neutron
Scattering Lengths
§.4.1  Methods of measurement

One of the most important applications of neutron optics
is in the experimental determination of the neutron
scattering lengths of the elements and their isotopes."”
The various methods that have been used are listed in Table
I. Most of these methods are based on the phenomena of
reflection and refraction at interfaces and, hence, depend
mainly on the real part of the index of refraction »” and lead
to a determination of the real part of the scattering length
b’. Transmission measurements depend on ”, and hence
on o;, and allow one to determine both b’ and b” by fitting

the data to (3.20), or to a generalized version of this

equation. Powder diffraction (i.e. Bragg scattering in
powder samples) and dynamical diffraction in perfect
crystals both depend on the absolute value of the unit-cell
structure factor,

F*hkl — ZbeZI‘n(hv:’k)'-l:). (4.1)
Here, (hkl) are the Miller indices of the Bragg planes that
are used in the measurements, & is the bound coherent
scattering length of an atom whose position in the unit cell
is (x, y, z), and the sum runs over all the atoms in the unit
cell. It is evident from (3.12) that the measured value of
|Fis| only allows a determination of ',

Method Date  Quantity  Acc. (%)
mirror reflection 1946  n’ 1
transmission 1947  n” 0.1
powder diffraction 1948 |Fy 1
small-angle scattering 1951  n’ 3

gravity refractometry 1965 ' 0.01
dynamical diffraction 1968  |F| 0.03
Christiansen filter 1969 n’ 0.1
prism refraction 1971  n’ 0.03
interferometry 1974 n' 0.1

Table I. Neutron-optical methods for the experimental
determination of bound coherent scattering lengths. Column
2 gives the dates when these methods were introduced, column
3 the primary quantities that are determined from the
measurements, and column 4 the accuracy that can be
obtained under favorable conditions.

§.4.2  Local-field correction
To lowest order, the general expression (3.1) for the
index of refraction reduces to

n* :1—(%) pb'(l+J’)+i(£]g‘—j.<4.2)

In practice, the imaginary term in (4.2) is usually very
small and can be calculated using values of o; obtained
directly from transmission measurements. Thus, as stated
in the previous section, neutron reflectometry
measurements are normally used to determine 5.

The main difference between (4.2) and the elementary
expression (2.7) is the presence of the local-field
correction. The correction term is given by (3.17), and at k
= 0 it can be expressed as

J'=b"lr, (4.3)

where r, is of the order of the nearest-neighbor distance
when the sample is a solid or liquid, or the mean free path
when it is a gas. The value of J ' for solids and liquids is
typically between 10-* and 10->. It is therefore evident
from Table I that, in practice, the local-field correction is
important mainly in gravity refractometry measurements.®

§.4.3  Electromagnetic correction

The scattering of thermal neutrons in non-magnetic
materials is due almost entirely to the strong (i.e. nuclear)
interaction between the neutrons and the nuclei, and the
primary role of electromagnetic interactions is in magnetic
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materials, where the magnetic dipole interaction between
the neutrons and the magnetic electrons gives a
contribution to the scattering amplitude of an atom that is
normally comparable in magnitude to that from the nuclear
interaction. ~ Nevertheless, even in a non-magnetic
material, there exist other kinds of electromagnetic
interactions between the neutrons and the atoms that give a
small but non-negligible g-dependent contribution to the
total scattering amplitude.”®

Although, strictly speaking, the electromagnetic
interactions give a correction to the scattering amplitude f,
we shall follow conventional practice and treat it as if it
were a correction to the scattering length 6. Thus, the
effective scattering length for the collision of a neutron
with a bound atom of atomic number Z is of the form

b(q) = b(0) - b,Z[1 - ¢(q)),

where 5(0) and b, are constants, and ¢(q) is the atomic form
factor (i.e. the Fourier transform of the electron number
density) and is normalized such that ¢(0) = 1.

The main contribution to 5(0) is from the nuclear
interaction between the neutron and the nucleus but there is
also a small electrostatic contribution (<0.5%) arising
from the neutron electric polarizability. The coefficient b,
is mainly due to the Foldy interaction,” which is a
relativistic quantum effect that gives rise to a scalar
coupling between the neutron magnetic dipole moment and
the electric charge density in the atom. However, there is
also a small additional contribution (10%) to b, from the
intrinsic charge distribution of the neutron.

The quantity b, is usually called the neutron-electron
scattering length because it describes the scattering of a
neutron by a single electron. However, this terminology is
slightly misleading because b, is not a property of the
neutron-electron interaction per se. Rather, it is entirely a
property of the neutron and characterizes its interaction
with any electric charge distribution, and not simply that of
the electron. Thus, the term —b.Z in (4.4) represents the
electromagnetic interaction of the neutron with the
nucleus, while the term b.Z¢q) represents the
corresponding interaction with the electrons. The atomic
form factor in the latter term describes the screening of the
nuclear charge by the electrons. At g = 0, where the form
factor equals unity, the screening is complete and the
electromagnetic contribution to the scattering length (4.4)
vanishes. In the limit g—co, on the other hand, #gq) -0
and the neutron sees the full unscreened nuclear charge so
that

(4.4)

b(0) =b(0)-5,Z. (4.5)
The experimental value of the neutron-electron scattering
length b, is —1.32 x 10-> fm while 5(0) = 5 fm. Thus, for all
but the lightest elements, the correction term in (4.3) is in
the range 0.5% to 2%. We see from Table I that this is often
one to two orders of magnitude larger than the
experimental uncertainty in the scattering length. In this
sense, therefore, the electromagnetic correction in (4.4) is a
large effect.

According to the exact expression (3.1), the index of
refraction is determined by the scattering amplitude in the

forward direction, where ¢ = 0. Thus, the scattering length
in (4.2) is 4'(0). On the other hand, the scattering length in
(3.20) is b'(q) and should therefore be put inside the
integral when the electromagnetic correction is included.
The scattering length in the expression (4.1) for the unit-
cell structure factor is also b'(g) where ¢ now equals the
magnitude of the reciprocal lattice vector corresponding to
the Brageg planes (hk/). The net result is that the methods in
Table I that depend on »' determine b5’(0) directly.
However, the methods that depend on n” or ]F,,k,| must be

corrected for electromagnetic interactions in order to
determine 5'(0).

This correction requires a knowledge of the atomic form
factor ¢(q). The International Tables for Crystallography'®
list accurate values of this quantity that have been obtained
from relativistic Hartree-Fock calculations for all the atoms
and chemically important ions in the periodic table.
Alternatively, since the correction is small, it is often
sufficient to use the approximate analytical expression *'"

1
#(q) = =,
\/1 +3(q/4q,)°

with go = 2. The value = 1.90 + 0.07A™" provides a
good fit to the Hartree-Fock results for Z > 20.

(4.6)

§.5. Conclusions

The key to resolving the problems with the elementary
theory of dispersion that were discussed in Sec. 2 lies in the
recognition, firstly, that as a result of local-field effects the
scattering amplitude F of an atom in a material medium is
different from the scattering amplitude fof an isolated atom
and, secondly, that for a finite value of k the scattering
amplitude f differs from the scattering length b by more
than the conventional minus sign. These differences are
ignored in the elementary theory of dispersion where it is
tacitly assumed that /"= f= —b. This is normally a good
approximation for 7’ because J '< 107, but it is a bad
approximation for F” because all three terms in (3.16) are
usually of about the same order of magnitude.

At present it is only in work of the highest experimental
precision, such as in the measurement of neutron scattering
lengths by gravity refractometry, that the local-field
correction in (3.15) is larger than the experimental
uncertainty in 4. It has been shown'? that the local-field
term could, in principle, produce a non-vanishing Fizeau
effect for neutrons. However, the effect is currently too
small to observe.

When electromagnetic interactions are taken into
account, the effective scattering length of an atom becomes
g-dependent and is given by (4.4). The essential point to
note here is that it is 5(0) that is normally listed in tables of
neutron data,>'® but it is b(q) that determines the coherent
scattering of thermal neutrons in condensed matter. To
interpret thermal-neutron scattering experiments, where g
> 0, an explicit correction for the second term in (4.4)
should therefore be made. In the past, experimenters have
tended to ignore this correction, a practice that was
certainly justified in the early days of neutron scattering
when the experimental uncertainty in 5(0) was much larger
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than the value of b.Z. However, for most elements this is no
longer true today, and this correction should be made
routinely in all experiments where an accurate
determination of the scattered-neutron intensity over a
wide range of ¢ values is important. Failure to make this
correction will introduce systematic errors of 0.5% to 2% in
the scattering lengths at large ¢, and corresponding errors
of 1% to 4% in the scattering cross sections.
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