Proc. Int. Symposium on Neutron Optics and Related Research Facilities, Kumatori, 1996

J. Phys. Soc. Jpn. 65 (1996) Suppl. A pp. 90-93

Geometric Phase in a Split-Beam Experiment
Measured with Coupled Neutron Interference Loops
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A geometric phase factor is derived for a split-beam experiment as an example of cyclic evolutions. The geometric phase
is given by one half of the solid angle independent of the spin of the beam. We observe this geometric phase with a
two-loop neutron interferometer, where a reference beam can be added to the beam from one interference loop. All the
experimental results show complete agreement with our theoretical treatment.
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1. Introduction

During the last decade, the geometric effect on the phase
of the wave function has excited considerable interest. It
was Berry!) who first clearly described the geometric phase
factor for a quantum system transported adiabatically
through a curve C in parameter space, this phase factor
depending solely upon the geometry of the curve C.
Several experiments were reported to manifest the effect of
this geometric phase. A spinning light experiment in an
optical fiber? was the first of this kind. A similar
experiment was accomplished with a neutron beam in an
adiabatically rotating magnetic field.>® Aharanov and
Anandan® released the restriction of adiabaticity for
Berry's phase so that the geometric phase may be
generalized to the state of the system in a cyclic evolution,
i.e., that it returns to its initial state after an evolution.
Experiments to observe this Aharanov-Anandan (AA)
geometric phase were accomplished by laser
interferometry®” and nuclear magnetic resonance.® In
addition, a dynamical aspect of the evolving geometric
phase® and the geometric effect for noncyclic evolution'®
were demonstrated experimentally.

More recently, another example was shown of geometric
phases in cyclic excursion around a diabolic point.!" The
experimental accomplishment to show the geometric
property independent of the spin or polarization of the
beam remains a minority compared to the spin or
polarization associated work. In a split-beam
experiment!?) where an incident beam is split and
recombined, one can insert phase shifters and/or absorbers
into each split beam, so that the system evolves under the
action of two separate Hamiltonians. Here, we justify the
split-beam experiment as a cyclic evolution of a quantum
system by analogy to the spinor rotation and show a
geometric property in it. In our theoretical treatment, the
overall phase is considered as a sum of weighted phases of
the two superposed partial beams, and the dynamical and
the geometrical phase factors are derived for the cyclic
evolution. Its geometrical property is shown with the use of
Poincaré sphere descriptions. The four-plate neutron
interferometer with two interference loops enabled us to
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realize experiments to observe this geometric phase, and
the experimental results completely agree with the
theoretical treatment.

2. Principle of the Experiment
It is well-known that the spinor rotation of a spin-%

particle in a homogeneous magnetic field results in a
geometric phase.’ Two bases, spin-up and spin-down
states, are assumed in such a case. In the split-beam
experiment, two similar bases are observable. This
similarity justifies regarding neutron interferometry, which
is an example of the split-beam experiment, as a cyclic
evolution of the quantum system. In the split-beam
experiment, the phase shifter, which is inserted to observe
the interference oscillations, directs the evolution of the
system along a certain curve, C, and the absorber, which
reduces the intensity of one beam, changes this curve of the
evolution.

The similarities between the spinor rotation and the
split-beam experiment allow us to define the dynamical
phase for the split-beam experiment. The dynamical
phase, @', can be defined as

B [(¥]ak-dl|w)

(YY) N
f,, (¥, |¥,)Ak, -dl L (W, | W, Ak, -dI
() (]w)

where |'¥;), I; , and k; represent the two wavefunctions,
beam paths, and wavevectors in the interferometer,
respectively. Here, we omit the real part of the phase shift
due to the absorber, which does not reduce the general
validity of our treatment.

Rearranging Eq.(1), we get
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where I, and y7, respectively, represent intensities and
phase shifts of the two beams, and 7 is the transmission
probability of the absorber in the beam path-II.

The geometric phase, £, in the split-beam experiment is
given with the total phase shift, ¢/, as

p=4-0', . (3)

From Eq.(2), one can see that, when rotating the phase
shifter, the dynamical phase shift, A®p, during the cyclic
evolution becomes zero when

Ay’ +T-Ag'y=0, (4)

where Ay’ is the change of y; during the cyclic evolution.
This equation shows that £ is explicitly observable in the
split-beam experiment with the right combination of phase
shifters and absorbers.

It is very instructive to use the Poincaré sphere for the
split-beam experiment and thereby to recognize the
geometric nature of the derived geometric phase, just as the
spin-sphere was used for the spinor evolution. The split-
beam experiment can be completely described within the
framework of a two-dimensional Hilbert space, H,, where
the states can be visualized as elements of the Poincaré
sphere.'® This sphere is shown in Fig.1. The vertical axis
represents the relative intensity of the two beams, and the
polar points represent the single-beam situations. When
shifting the relative phase, 6, between the two beams, the
state traces a latitudinal circle on the sphere dependent on
the ratio between the intensities of the two beams.

With this sphere, the solid angle, Q, which is subtended
by the traced curve at the origin, is given by
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The geometric phase, S'(C), for one cycle curve, C, is
associated with its solid angle, Q(C). Berry!) has shown
that this is given with the helicity, o, by
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Equation (5) shows that the solid angle, Q2, depends only on
the transmission probability, 7, of the absorber, which
determines the curve of the evolution, and the geometric
phase, £'(C), is derived from this transmission probability.
When one uses the right combination of phase shifters
and absorbers so that the condition of Eq.(4) is satisfied, the
geometric phase emerges explicitly in the out-going beam
from one interference loop. Since it is necessary to add a
reference beam to the beam, which is recombined from one
interference loop, a four-plate neutron interferometer with
two loops is the most suitable tool for the detection of the
geometric phase'?); the experimental setup is shown in
Fig.2. In the interference loop (Loop-A) between the
second and the fourth plate of the interferometer,
appropriate pairs of phase shifters and absorbers are
inserted in each split beam path to compensate for the
dynamical phase during the cyclic evolution. The phase
shifters direct the state of the recombined beam from this
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Fig.1 Poincaré sphere descriptions for split-beam experiments.
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Fig.2 Experimental setup to measure the geometric phase in the
split-beam experiment with o four-plate neutron
interferometer.

interference loop through cyclic evolutions, and the
absorber changes the curves of these cyclic evolutions. In
the other interference loop (Loop-B), a beam split at the
first plate of the interferometer is recombined with the
beam from the interference Loop-A. This split beam acts as
a reference, and another phase shifter is inserted in this
beam path. The interference oscillations between the
reference and the interference beams are measured using
this additional phase shifter. The geometric phase of the
out-going beam from the interference Loop-A is measured
as shifts of these interference oscillations.

3. Experimental

The experiments were performed with the neutron
interferometer instruments V9 at the BENSC, Hahn-
Meitner Institut in Berlin.'” A schematic view of the
whole experimental arrangement is shown in Fig.2. A
four-plate neutron interferometer of monolithic perfect
silicon crystal having two interference loops was used.!?
One interference loop (Loop-A) between the second and the
fourth plate of the interferometer is used to cause the
evolution of the geometric phase. The other loop (Loop-B),
which has an additional phase shifter, is used to observe the
shifts of oscillations due to the geometric phase. This
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interferometer was adjusted to give (220) reflections. The
220-planes were perpendicular to the plates' surfaces. The
wavelength was 1.95A.  The beam cross-section was
reduced to 2mm (horizontal) and 10mm (vertical) by a Cd
diaphragm in front of the interferometer. As shown in
Fig.2, a *He-detector was set at one of the beams, this being
in the transmittted direction after having been recombined
from three beams.

In the interference Loop-A, an absorber and a phase
shifter—which had different thicknesses for the two
beams—were inserted. The absorber reduced the intensity
of one of the beams, thereby changing the geometry of the
evolution of the state. The relative phase between the two
beams was changed by the phase shifter to promote the
evolution of the state on a latitudinal circle on the sphere.
At first, no absorber was inserted in order to examine the
case when the intensities of two beams were the same.
Later we inserted two different kinds of absorbers in one of
the beam paths between the third and the fourth plate of the
interferometer.

A phase shifter, called the phase shifter-I (PS-I), was
inserted between the second and the third plate of the
interferometer. Three kinds of parallel-sided Al plates
were used, these having different thicknesses according to
the transmission probability of the absorbers, so that the
dynamical phase shifts during the evolution were zero. The
first of these plates was Smm in thickness for both split
beams and was used for the case without the absorber. The
second was 10mm thick for the beam which had been
reduced in intensity by the absorber and 5mm thick for the
other beam, and was used for the case in which the
transmission probability of the absorber was 0.49. The
third was 10mm thick for the intensity-reduced beam and
2mm thick for the other, and was used for the case in which
the absorber had a transmission probability of 0.21.
Rotation of these Al plates around the vertical axis
produced a phase shift 4y= -NAb.4D; on each beam,
where N is the number of nuclei per volume, A is the
wavelength of neutrons, 4. is the coherent scattering length
of Al, and 4D; is the change in thickness when Al plate is
rotated.

The beam in the interference Loop-B, which was split at
the first plate of the interferometer and recombined with
the beams from the other interference loop (Loop-A) at the
fourth plate, is used as a reference for the phase. In order to
obtain an adjustable phase reference, a parallel-sided Al
plate which was 5mm thick was inserted in the reference
beam path between the first and the second plate of the
interferometer. We call this plate the phase shifter-II (PS-
II). Rotation of this Al plate around the horizontal axis
changed the effective thickness of this plate in the beam
and thus introduced the phase shift.

Before measuring the shifts of the interference
oscillations with the phase shifter-II, it was necessary to
show with the phase shifter-I how the interference loop-A
would behave with various pairs of phase shifters and
absorbers. Interference oscillations with three different
pairs of phase shifters-I and absorbers were measured by
rotating the phase shifter-I.

The geometric phase shifts, which we intended to
measure, were induced on the recombined beam from the
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Fig.3 Typical shifts of interference oscillations measured with
the Phase Shifter-II at the three peak positions.
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Fig.4 Experimental results of geometric phase shift as a
function of solid angle in the split-beam experiment. The
solid line correslponds to the theoretical prediction given by

Eq.(6) for 0= 3
interference loop-A with the phase shifter-I and the
absorber. These geometric phase shifts were measured
with the phase shifter-II in the reference beam. Here, since
we pay particular attention to the phase shift by the cyclic
evolution of the system, interference oscillations caused by
the PS-II were collected by fixing the PS-I at the three peak
positions of the intensity modulations. The collected data
were fitted to sinusoidal curves by the least-squares
method. Typical intensity oscillations obtained by the PS-
II, along with fitting curves and their shifts in peak
position, are shown in Fig.3. One can see that the
oscillations get shifted depending on the peak positions by
the PS-I.

We collected the data by repeating the same
measurements for the three combinations of the PS-I and
the absorber. The obtained intensity modulations were
fitted to sinusoidal curves and the shifts of the oscillations
were analyzed quantitatively. With these procedures, we
obtained the shifts of 3.144(38), 2.207(54), and 1.222(60)
radians for the cases of the 10mm thick PS-I without an
absorber, the 10mm/5mm thick PS-I with the absorber
(7=0.49), and the 10mm/2mm thick PS-I with the absorber
(T=0.21), respectively.

In the theoretical predictions, the obtained phase shift is
associated with the solid angle subtended by the closed
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curve of the cyclic evolution on the sphere, when this phase
shift has a true geometric property. The solid angles, Q, for
three combinations of phase shifters-I and absorbers are
given by Eq.(5). Figure 4 shows the extent of the
quantitative agreement between the measured values
(squares) and the expected values of the geometric phase
shift (solid line) for o = 1/2 in Eq.(6). A slight deviation
from the theory may be due to the fact that the dynamical

phase factor was not exactly zero under our experimental
conditions.

4. Concluding Remarks

We have derived the geometric phase for the split-beam
experiment, which is independent of the spin or
polarization of the beam. All results obtained thus far are
in complete agreement with the theoretical predictions. It
is clear that the geometric phase for the split-beam
experiment is proportional to the solid angle subtended by
the curve at the origin and that its coefficient is one half.
This is due to the fact that the cycle of the transformation in
the split-beam experiment is a sequence of SU(2)
transformations,'® i.e., rotations, which is closely related
with the spin one half system.!” Since the geometric phase
in the split-beam experiment is independent of the spin of
the beam, the same results could be obtained with any kind
of particle beam, such as photons, x-rays, atoms, etc.

In an example of the spinor rotation in a homogeneous
magnetic field,* the Hamiltonian in the rest frame provides
a positive energy for a spin-down state, which induces a
negative phase shift. This phase shift, however, can be
regarded as positive due to the 2n-periodicity of the phase.
In other words, while the positive energy due to the
Hamiltonian causes a negative phase shift in naive
considerations, it can be considered to cause a positive
phase shift as well. Thus, a positive and a negative
energies, as well as phase shifts, being intuitively regarded
to cancel each other, can bring forth an additional phase
factor, namely, the geometric phase factor, in the
recombined beam. The 2n-periodicity of the phase reflects
the geometric phase factor.

This is the first application of the four-plate neutron
interferometer for a fundamental measurement. This type
of interferometer can be used both for photons and neutrons
and is well suited for other fundamental physics
applications.
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