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We have experimentally measured the cross-correlation of neutron arrival times in the detectors of a neutron
interferometer. A comparison of the experimental results is made for both a chopped and un-chopped incident neutron
beam. The experimentally detected cross-correlations are presented and compared with the theory based on the Poissonian

statistics of truly random events.

By varying the neutron interferometric phase we look for quantum effects in the

cross-correlations which are not explainable by the classical Poissonian statistical theory. We have also placed 57%
efficient detectors, which are virtually phase transparent, inside the interferometer (in addition to the standard 99%

absorption detectors in the exit beams).

KEYWORDS: Pair Correlation, Chopper, Neutron Interferometry

1. Introduction

Recent neutron interferometry experiments'™ have
measured the neutron coherence effects described by the
auto-correlation function”®

r®(a,z=0)- (tp(o,o)' lIJ(A,0)> ;

-6)

(1)

where A is the spatial delay of the neutron wave packet.
These experiments measured the longitudinal, vertical and
transverse coherence lengths (SOA x 2004 x S0,000A).

The coherence time may be calculated from 7°=Av,
where A° is the coherence length and v, (~2000 m/s) is the
group velocity of the wave packet. This calculation gives a
value of ~10"2 s as the expected coherence time. Such a
small coherence time is well beyond the uncertainty limit
(~10"s) imposed by current neutron detection technology.
It is then expected that the mutual coherence function, for
neutron pairs, reduces to the classical pair correlation
function for randomly arriving neutrons’?, i.e.,

r®, (a.0)-(7,00),(a7) .

In Eq. (2) “a” and “b” distinguish two different detectors.
Previous experiments have examined the case when a and b
are the same detector'®. In this experiment we are
interested in correlating pairs, in separate detectors (i.e.,
a=b), on a time scale which is on the same order as the
detector temporal resolution (~5us) to see if theory and
experiment match.

This experiment was performed at the University of
Missouri Research Reactor Center on the beam port C
interferometry station which operates at a fixed nominal
wavelength  4=2.35A  (v=1.683mm/ps). This
interferometer setup has the advantage of high flux and
good long-term stability.

In addition to the standard 99% efficient O and H beam
detectors we have placed two detectors with roughly 57%
efficiency inside the back half of the interferometer (see
Fig.1). By wrapping these detectors with titanium, which
has a negative scattering length, we exploited the neutron
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Fig. 1. The experimental setup used in this experiment is shown
in the top panel. In the above figure a perfect silicon crystal
interferometer (distance between blades=5cm, blade thickness
=0.35cm) splits a beam of neutrons which has passed through
a 4mmx10 mm slit near at point “A”. At points B and C the
beams are reflected so that they travel through two 57%
efficient He-3 detectors to meet at point D. The outgoing
beams after point D are coherent linear combinations of the
wave function after having traversed paths I and II. An
aluminum slab extends across both beams to allow the relative
phase shift between the two paths to be varied. The lower
panel shows the variation of intensity for the four detectors as
the aluminum slab is rotated.
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phase echo effect to render these detectors virtually phase
transparent”.

2. Un-Chopped Experiment

In the first part of this experiment the arrival times of
neutrons in the detectors are measured. After correcting
for the time-of-flight between the separate detectors (10°-
10°ps) it will be shown how the neutrons are distributed in
time between the individual detectors.

The O and H beam intensities are functions of the relative
phase difference 45 between the neutron wave which
traverses path II and the wave which travels path I. The O
and H beam intensities are given by''"'?

I, -fo(l+C, cos(Aﬂ(5)+ AB, )), (3a)
Iy =Ty -T1,C, cos(8B(8)+AB,),  (3b)

where 1, is the average counting rate in the O beam, H

is the average counting rate in the H beam, AA(J) is the
phase shift due to the aluminum phase rotator flag and A/
is the offset phase shift (empty interferometer) between
path II and path I. The intensity in the detectors inside the
interferometer are expected to be constant as AZJ) is
varied. These single particle intensity variations are
recorded in order to separate them from any anomalous two
particle intensity correlations.

The initial contrast C; is defined by the minimum and
maximum counting rates in C2 and C3, i.e.,

Ci = L’M . (4)
1 max T 1 min
The initial contrast is less than unity due to imperfections
in the interferometer crystal, vibration in the experimental
setup, and unavoidable density variations across the
transmission detectors inside the interferometer.

To correlate all four detectors, it is necessary to develop a
theory to describe the probability of counting a neutron at a
time ¢+7, in any one of the four detectors, after having
counted a previous neutron in one of the detectors at a time
t. It will be assumed that the neutrons from the reactor
arrive at random times in the detectors. For randomly
arriving neutrons the probability p=/4t represents the
probability of measuring a neutron in a time interval 4r. It
is required that p be constant and that p<<1 which may
easily be guaranteed by picking 4t appropriately small.
The probability of detecting a neutron in detector “4” at a
time 7r=nAt later after having measured a neutron in

“ _n

detector “a” at a time ¢ is then

( Probability of not measuring a neutron )
"~ \ between times f and t+A t in detector " a"

(Probability of finally measuring only onej
X
neutron at a time /+A¢ later in "5"

[0-ra) )< 0-2) ]

where p,=I,At, p,=I,At and n is an integer greater than or
equal to 1. Using Eq. (5) the neutron pair probability
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Fig. 2. The pair correlation function for neutrons detected in
detector C2 and C3 for two different phase shifts AB. Each
point is the average number of pairs per second detected in an
interval At=4.1ms. The solid line represents a fit to Eq. (7).

density for a=b may be written as

n/"_’b(Aﬂ’ T) = Ao At (6)

iy (Aﬁ)e a(8B)+1,(8B)) © ’

which is a decaying exponential in pair spacing time 7.
The pair correlation function is the product of the

intensity in detector “a” and the neutron pair probability
function

L2, (A7) = 1(AB)W,_, (AP, 7). (7)

In Fig.2 the data collected when a is detector C2 and b is
detector C3 is plotted along with Eq. (7).

The data plotted in Fig.2 were measured by recording the
time of arrival of each neutron using four Ortec MCS II
cards which were plugged into the bus slots of a Hewlett
Packard 486 PC. The MCS cards were used to count the
number of clock pulses (pulse period = 0.820us) between
neutron arrivals. By counting clock pulses the absolute
time of arrival of each neutron was recorded.

In this experiment the neutrons which arrive with small
pair spacing time 7 are examined since these neutrons are
the most likely to exhibit anomalous correlations.
Summing the pairs arriving per second for pair spacings
between 0 and, say, 7, gives

I,.,(AB) = Ir:ii,,(Aﬂ, 3%

[l— ~(1a(8B)+15(88))7,

=1 (ApB),(A .

a( ﬂ) b( :B)Tz (]a(Aﬂ)'*”[b(Aﬂ))Tz
(8)

[t is necessary to focus on neutrons arriving at time scales
greater than the detection time uncertainty (~5ps), and so a
comparable time scale of 41us was chosen. This time scale
is also comparable to the time-of-flight across the
interferometer which is 77us. In Fig.3 the data are plotted
along with Eq. (8) for this time scale as a function of the
relative single particle phase difference AS. By varying the
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single particle phase shift via the phase shifter, the intensity
loss or gain due to single particle correlations are
distinguished from the intensity differences due to
unexpected, two particle correlations. Neutrons arriving in

the detectors appear to be randomly distributed with no o~ rrrraTevry S
correlation effects beyond those predicted by classical 2300t M T ;gg
Poissonian statistics. T 200 T 1 200 + ’ |
= 100 T . 4 J
3. Chopped Experiment % 0 +—++ CZ_)(B +— log — C3_)C4 —+
A Fermi chopper was added to the experimental setup as 5 750 + W 1 200 + . -
is shown in Fig.4. This chopper was incorporated into the € 5004 10T 1
experimental setup in order to look for anomalous & 250 4 ] 1(5)8
correlations between any two neutrons localized in a 8 04— fcf_,’cf, ' 0 4— :(::3_:’(:;5 —
chopped pulse. 2 R e el
This chopper was built by the URANIT Corporation and & Wy W 1 40T l
was operated at a rotational frequency /=30,000 rpm. The 2200 T 1 200 + .
chopper wheel has 12 equally spaced slits which are 1° o ad CEPO. Ll o) SR
wide. The chopper creates pulses when the moving slits 43210123 4 432101234
pass a stationary slit. At 30,000 rpm the full width at half )
maximum of these pulses is around 5.6 ps at the chopper, Phase Shift AP (radians)

spreading out downstream at detector C4 to 6.5 ps.% Each
pulse is separated from the next by a 166.7 ps flight time. 2. A0 ’

To describe the chopped data a probability relation arrival times between 70 and 7=41ys as a function of the
similar to Eq. (6) will be derived in which it will be spatéal lzgl)ase shift. The solid line is the theoretical value based
assumed that neutrons are arriving randomly at the i
chopper from the reactor. These pulses then travel into the
interferometer where each detector has a certain probability
of detecting a neutron within the pulse depending on the
counting rate in the detector. For a triangular shaped
chopper pulse shown in Fig.5, the probability of measuring

Fig. 3. The average pair correlation function is plotted for
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Gd,0, Neutron Absorber

a neutron at any time t is given by Fermi Chopper
0; |6t =1, m /=30,000 rpm
- : Stationary
p(t)=1A 1+ 8/t 1 <0 (9) “o1Slit itaniom
Wrapped
1-6t/t,;t >0, Slit o
where &t =t —t, and f, is the center of the chopper pulse, 6// E gg?:gg‘rts

t. is the full width at half maximum of the chopper pulse at

the detector, and 7 is the average counting rate when the ﬁ’g&iﬁr
beam is not chopped (this rate is much less than the rates / \ /
shown in Fig.1 due to the small slit used on the chopper).
o . . apn Single Crystal g
The probability of measuring a neutron in detector “b” at a Neutron Interferometer Efficient
time t+7, after measuring a previous neutron in detector “a” Detectors
is given by (as before)
j=n Fig. 4. The placement of a Fermi chopper relative to the
we )= 1= 1+ 7-Af interferometer is shown. The stationary slit on the chopper is
"'a_’b( ) g( pa( S )) a 1.5mmx20mm slit which matches the size of the 1° slits on
the chopper wheel. On the interferometer is 4mmx10mm slit.
Jj=n-1
x| [T0=po(t+j-A)p,(1+7) ], ‘
Jj=1
(10) « I (neutrons/s)
where the superscript ¢ is used to distinguish the chopped FWHM = ¢, :
and un-cl'loppgd probability functions. Since (/,+/;)7<<1 ‘ t t(s)
eq. (10) simplifies to -, ot
Z':' (r+j0t)+1,(t+jbr))At
pVa_w (I T) (A,B {1+ T)Ale = , Fig. 5. The shape of a triangular intensity pulse created by the

chopper.
(11) PP

or in terms of the neutron pair probability density
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)
I/Va—)b

(t.7)= lim Wy, , /At

= ]"dt'(l,,(t')d,,(t'))

=I,(AB,t+7)e (12)
zlb(A,B,t+ z') ;

where the fact that the pulse width is small was used.
Equation (12) represents the probability density for
detecting a neutron in detector “b” at a time t+7, after
having detected a previous neutron in detector “a” at a time
t.

The chopper pair correlation function is then
L& (AB,t,7)=1,(AB ), (AB1+7) . (13)

Instead of recording the time of arrival of neutrons in the
chopped pulses, the total number of neutrons in each pulse
are counted and stored sequentially in the MCS II cards
mentioned in Section 2. Most pulses do not contain any
neutrons; however, a very small percentage of the pulses
contain one neutron and even fewer contain two neutrons.
Pulses with two neutrons allowed multiple detectors to be
correlated. Since the detection system is not capable of
distinguishing between arrival times ¢ and pair spacings it
is necessary to sum over all pair spacings 7, and average
over all arrival times ¢ in Eq. (15) to achieve the pair

counting rate
c _ 1 .
I;,(AB) = 30z, _([d‘r—lj;:it Ls(AB,7), (14)

where the factor 30 comes from averaging 12 slits around
the 360 degrees on the chopper wheel. Substituting the
triangular shaped pulse of Eq. (9) into Eq. (14) gives

I7,.(AB) = L(AB)L(AB)1./72) . (15)

which is plotted with the experimental data in Fig.6.
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Fig. 6. The data taken for the chopped pair correlation
experiment. The cross correlated detectors “2” and “b” are
indicated in the upper right hand corner of each plot. The
solid line represents the theoretical prediction based on Eq.
(15). These data represent the highest resolution for neutron

pair correlations achieved in this experiment.

4. Conclusion

The neutron pair correlations have been examined for a
Poissonian source of neutrons. The same results obtained
in Egs. (5)-(7) can be obtained without the use of an
interferometer by considering the counting statistics of a
particle beam. However, the use of a neutron
interferometer is unique in that there are no guarantees that
pair correlations in a neutron interferometer will be the
same as those observed in a particle beam, until such a fact
has been demonstrated experimentally. The results of this
experiment show that the two are equivalent for pairs
separated by currently resolvable flight times.

The un-chopped data agree with what is expected for
randomly arriving neutrons separated in time by the
detector temporal resolution of ~5pus. The chopped data
agree qualitatively with the theory of randomly arriving
neutrons in that the counting rate is not higher or lower
than expected based on Poissonian statistics. However, low
counting statistics limits the accuracy of the chopped data.
To significantly improve the quality of the chopped data, it
is necessary to count for a longer period (e.g. a year). The
intensity and temporal resolution could be improved,
without the use of a chopper, if faster detectors are used
instead.

To perform correlation experiments in which quantum
mechanical anti-bunching effects are expected to be
observable, a higher neutron flux source and greater
detector time resolution are necessary. Experiments using
detectors capable of resolving pair spacings on the order of
10" s, with current neutron flux rates, would be hampered
by extremely low counting statistics, even if this time
resolution could be achieved. From Eq. (8) we can estimate
with the parameters used in this paper, that we could expect
on average, to measure only one pair spaced within the
ensemble, longitudinal coherence time every 30 years.
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