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A Neutron Interferometric Test for Quaternion Quantum Mechanics
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We present preliminary results of an on-going neutron interferometric search for evidence for a quantumn mechanics based
upon the quaternion number field. Following a proposal of Klein, the experiments look for non-commutative quaternionic
modifications in the interaction of a neutron with pairs of the known fundamental forces (strong, electromagnetic and

gravitation) taken in permuted order.
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1. Introduction

In 1936, Birkhoff and von Neumann'? were unable to find
any natural hypotheses that quantum theories must be
described by complex quantum mechanics. Since then, it
has been shown that a mathematically self-consistent
quantum theory is possible in a Hilbert space over the
quaternionic number field, Q, and presents a viable
alternative to the standard complex formulation.>”

Quaternions® are hyper-complex numbers of the form
Q—qo+q11+qzj+q3k—qo+l with
it = ,\2 = k? =-ji = k etc., which
satlsfy associative, distributive but not commutative laws.
They form a number field which is closed under addition
and multiplication and are the only generalisation of
complex numbers for which division is possible and
unique. In general quaternions do not commute, however,
quaternions having the same J can be written as Q =a + bJ
and do commute, behaving just like complex numbers.
Such quaternions are said to be collinear.

A purely imaginary quaternion taking the place of the
complex i in the Schrodinger equation implies the
existence of completely new physical phenomena. At the
very least, the extra dimensionality of the vector
(imaginary) part of the quaternion algebra predicts subtle
modifications to existing quantum theories. These include,
extra polarisation states of fundamental particles, a new
curvature of connections and form of Berry's geometric
phase accumulated around any closed trajectory in a curved
QO-space (with similar corrections to the topological
Aharonov-Bohm effects), and new results to Bell type
experiments of multi-particle correlations in entangled
states involving tensor products.”

Whether quaternionic quantum mechanics (QQM) has
any physical manifestations in the real world is a matter for
experiment to decide. To date such a QQM has remained
well hidden from experimental determination, indicating
that any effect is extremely small. The purpose of this
search is not so much to observe evidence of a quaternionic
effect, but to put an upper limit on the size of any
quaternionic term modifying the standard quantum
mechanics.

=-1 and ij

2. Experiment

This work turns to particle interferometry and a re-
examination of the interaction of non-relativistic matter-
waves with the predicted quaternionic potentials of the
classical fields.*® Not knowing the exact form that a
quaternionic potential would take, the rationale for
experiment is based on the observation that quaternion
algebra is non-commutative with the inference that
quantum mechanics will behave in a similar way. The basis
of such an experiment is that, in a complex theory, the
imaginary part of a plane wave transmitted through a pair
of square potential barriers is independent of the order of
the barriers. However, in QQM, if the operators are not
collinear the operators rotate the imaginary quaternionic
components of the wave about quaternionic directions
normal to the Argand plane (the plane determined by the
operators), and give rise to non-commutative phase shifts,
as will now be explained.

Consider the theoretical interferometer shown in Fxg 1,
a pair of identical quaternionic phase shifters (potentials)
are placed in reversed order in each arm. This situation
gives rise to an intensity of
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4 |+ (cos i + msin p)(cos v + nsin v)
(1)
where x and v are positive numbers and m and n denote
unit quaternions of unspecified direction.
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Figure 1. Schematic of the theoretical interferometer used to
derive the expected change in intensity due to any non-
commutative effect of the ordering of identical quaternionic
potentials, M and N, in each arm of the interferometer.
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This expressions simplifies 10
I = I,[1-sin® gsin® v(m x n)’] . (2)

Thus if m and n are non-collinear, there will be a change in
intensity due to the reversal of the order of transmission
through the two potentials, i.e., a non-commutative effect.

To our knowledge there has only been one previous
experiment,” performed by the neutron interferometry
group at MURR, following the explicit proposal of Peres,”
to look for non-commutative effects in the neutron-nucleus
scattering amplitudes. In this experiment neutrons
traversed Al and Ti phase shifting slabs inserted in one arm
of a neutron interferometer first in one order and then in
reverse order. The motivation for selecting Al and Ti is that
the real parts of their nuclear scattering lengths are of
opposite sign. To better than 1 part in 30000 these two
phase shifts commuted. If QQM actually is the theory
required to describe the real world, a possible reason for
this null result is that the strong interaction operator results
in rotation in the same abstract plane, i.e., the quaternion
terms are collinear, independent of the scattering nuclei.
Note that in this experiment only one fundamental
interaction, the neutron-nuclear potential, a manifestation
of the strong interaction, was considered.

The present experiment is a generalisation of this
previous experiment wherein, following a proposal by
Klein,'” we subject the split neutron beam of the
interferometer to two different fundamental interactions in
permuted order. The rationale is that the different
fundamental interactions of nature (strong, electroweak
and gravitational) may give rise to non-collinear
quaternionic operators operating on different quaternionic
components of the wavefunctions, i.e., that there may be
small but finite angles between the quaternionic directions
that the operators rotate about, giving rise to non-
commutative phase shifts.

A schematic of the experimental set-up to achieve this is
shown in Fig.2. Nominally 1.2A wavelength neutrons are
incident on a perfect single Si crystal neutron
interferometer in which, as standard practice, an
interferogram is produced as a function of the difference in
path length through a nuclear interaction in each arm of the
interferometer. Using a special two-section aluminium
phase rotator (whose two sections are of different
thickness) that straddles the middle blade of the
interferometer, two interleaved interferograms can be made
as the phase rotator oscillates between incrementing
angles, &, alternating between positive and negative
directions (an example of such an interferogram is shown
in Fig.3.). In this geometry, the nuclear interaction in the
ABD path (path II) of the interferometer alternates between
being in front of and behind the middle blade in the positive
(+)8 and the minus (-)J orientations respectively. The
reverse is true along path ACD (path I). The second
interaction is then introduced in a fixed position near the
center blade of the interferometer (before or after) so that
the permutation of the order of the nuclear potential with
the second potential is achieved for positive and negative &.
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Figure 2. Schematic of the experiment, showing the neutron
interferometer (blade separation 35mm, blade thickness
2.5mm) and the two-section phase rotator. The first
experiment introduced a gravitational interaction by tilting
the interferometer about the incident beam. The second
placed a region of magnetic field in path II just after the
middle blade.

'g Nuclear Interferograms ® Data
Q2000 —— Fit
=
(s}
=
8
S 1600
S
o
€
=
o
(&)
1200
el
2
©
E
S 800 - &
T T T T T T T T

35 -30 -25 -20 -15 15 20 25 30 35
Phase Flag Angle, 3, (deg)

Figure 3. Plot of the interferograms achieved as a function of the
angle of the nuclear interaction of the split Al phase flag.

In the first instance, a difference in gravitational
potential is introduced by tilting the interferometer through
an angle « about the incident beam. An example of this
gravitationally induced quantum interference as a function
of tilt angle is shown in Fig.4. In the -Sorientation, the split
neutron wavepacket in path II traverses a gravitational
potential gradient (positive or negative for a positive or
negative) along the entire length AB upstream of the
nuclear potential of the phase flag in the horizontal section
BD. The wavepacket on path I does the reverse, crossing
the nuclear potential in the horizontal section AC and then
the gravitational potential gradient along CD.

The entire situation is reversed for the +d condition. On
path II, the all-permeating gravitational potential gradient
still occurs along the length AB, however now the nuclear
interaction of the phase flag is part way along this length,
resulting in some of the gravitational interaction being
downstream of the nuclear potential. Similarly on path I,
both interactions are found on CD with some of the
gravitational interaction upstream of the nuclear. To this
extent the permutation of interactions in each path has been
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Figure 4. Gravitationally induced quantum interference

achieved by tilting the interferometer about the incident
neutron beam.
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Figure 5. Plot of the difference in offset phases of the +§and —§
interferograms, AD(8)=(A@; — A@-)/2, as a function of
interferometer tilt angle a.

reversed and a phase shift between the interferograms for
each condition is sought.
The +J interferogram is given by
L, (a,0)=a,, +
b,, cos[AD_ (@) + AD, + AD__(5) + AD, (5)],
(3a)

grav nuc

and the -d interferogram is given by
I, (a,0)=a, +

b;_cos[AD . (@) + AD, — AD_ (5) + AD_(5)],
(3b)

where A®,,,(0), is the gravitational phase shift, AD,, the
original offset phase -of the (empty) interferometer,
AD,,(6), the nuclear phase shift as a function of
aluminium phase rotator angle &, and A®(J), any other
phase shift dependent on §(where a quaternion term would
appear). A standard non-linear least-squares fit of the form

1,,(£6) = A,, + B;, cos[AD,_ (+5) - Ad,] (4)

grav nuc

as a function of J'to the interferograms (Fig.3) at each tilt
angle results in offset phases

Ag, = AD_, (a) + AD, + AD_ (6) (5a)
and
Ap = AD,, (a) + AD, + AD _(5) . (5b)

We subtract these to obtain Ag, — Ag. =AD,(5)-AD_(d) =
2AD(6), where by interleaving the +6 and -5
interferograms, we have eliminated any even-symmetry
part of A®(S), and any phase drift in the empty
interferometer phase A®D,. A plot of AD(J) as a function of
a is shown in Fig.5. The results indicate a small, but
definite systematic effect dependent on the tilt of the
interferometer. The source of this effect is being looked
into. Initially, we thought it was possibly an artifact of
bending of the phase flag and the support under their own
weight as they are tilted. Further improvements to the
experiment using a more substantial support have shown
this not to be the case.

A second similar experiment has been performed by
placing a variable vertical magnetic field, B, in path II
(after the middle interferometer blade, see Fig.2 ) and
permuting the nuclear potential of the phase flag with it, in
the same manner as described previously. The magnetic
field adds an extra dimension to the experiment as it
interacts with the neutron's magnetic moment, causing its
intrinsic spin to precess, while the nuclear and
gravitational interactions are spin-independent. The form
of an interferogram assuming a polarised incident beam is

I; = a; + b, cos[AD,,, + AD, + 0AD, ], (6)

where A®,, and AD, are the nuclear and offset phases as
defined previously and A®,,, is the spin-dependent
magnetic phase shift, with o =£1 for spin up or down,
where up and down are defined as parallel and anti-parallel
to the applied magnetic field. For an unpolarised incident
beam such as used in this experiment, the total intensity is
the sum of the intensities for spin up and spin down, that is

13 = I3T + 13&

g (7
a, + b, cos[AD,_  + AD,]cos[AD )

mag ]

allowing separate control of the spin-independent (A®,,)
and spin-dependent (A®,,,,) phases. A plot of the measured
amplitude of the nuclear interferograms as a function of
magnetic field is shown in Fig.6. The noticeable loss in
contrast of these interferograms is due to inhomogenieties
in the magnetic field across the beam, and means the
amplitude b5 of the nuclear interferogram also has a field
dependence.
The interferogram for +& becomes

I3+ (Ba 5)
=a,, +b;, (B)cos[AD,  (5) + AD, + AD, ()]
x cos[AD, .. (B)]
(8a)
,and for -4,
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13—(B7 5)
=a, +b, (B)cos[AD,,.(8) + AD, + AD_()]

x cos[AD, .. (B)]
(8b)
,where again A®. () is any other spin-independent phase
shift dependent on &. Fitting aluminium phase rotator scans
to this as a function of &§ at each magnetic field setting
(which only effects the amplitude of the interferogram)
results in offset phases

Ap, = AD, + AD, (5) (9a)
and
A A(I)0 + AD_(5) . (9b)

As before, subtracting Ag, — Ag. = AD.(S) - AD_(6)
=2A®(J). A plot of this difference phase as a function of
magnetic field is shown in Fig.7. The results again indicate
a small but definite systematic effect dependent on the sign
of cos[A®n.,(B)] and size of the magnetic field. No
explanation for this effect has as yet been found, but
experiments using more uniform and larger field
distributions across the beam are planned.

It is also possible to perform magnetic interferograms

for fixed values of nuclear phase, wherein the
interferogram has the form
I,(B,d) = a, + b;(B) cos[AD, . (6) + AD,]
x cos[AD_ . (B) + AD(B, 5)] ’
(10)

where AD(B, ) is a spin-dependent phase shift dependent
on 8. This is currently being pursued.

3. Conclusion

Preliminary results of this on-going experiment are
inconclusive. Any non-commutative effect of quaternionic
nature should not result in phase deviations as large as we
have found here, otherwise it would have been noted
before.' It should be noted that the theoretical limit to the
observability of truly non-commuting phase shifts is the
size of the overlapping nuclear-gravitational interaction,
this is at least an order of magnitude below present
experimental sensitivity. On-going work to isolate all
possible systematic effects is being carried out, and a
rigorous conclusion will be reported in a subsequent paper.
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Figure 6. Plot of the amplitude of the nuclear interferograms as
a function of magnetic field in one arm of the interferometer.
The dramatic loss in contrast is assumed to be due to
inhomogenieties in the magnetic field across the beam. The
line represents a sinusoidal fit of linearly decreasing
amplitude.
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Figure 7. Plot of the offset phase as a function of magnetic field.
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