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A method is described for inverting specular neutron reflectivities from real, symmetric, compactly-supported

potentials of known thickness.

For such potentials, the phase of the complex reflection coefTicient is equal to the

phase of the transmission coeflicient plus a known phase shift and thus can be retrieved from a single measurement

of reflectivity using a logarithmic dispersion relation for the transmission.
be inverted to find the potential by solving the Gel'fand-Levitan-Marchenko integral equation.

The resulting reflection coefficient can.
The method is

general, to the extent that symmetric potentials can be formed by abutting two identical specimens of a film of

interest.
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§.1. Introduction

Recent progress has been made in the problem of
measuring the phase of neutron reflectivity, thereby
opening new possibilities for the analysis of specular
reflectometry, including the determination of scattering
length densities by direct inversion of data. These new
theoretical methods of phase determination are
effectively restricted to neutrons because of an express
requirement that the scattering length density be real
valued, which is well met for neutrons in most cases but
not for x-rays.

In one approach,”? both the complex reflection
coefficient and its norm, the measured reflectivity, are
shown to be expressed by the same three functions of the
elements of a 2x2 transfer matrix. These functions are
measurable from the reflectivity spectra of three samples,
each consisting of the same unknown film and one of
three known reference layers.  While this method
requires three measurements, it entails only algebraic
and local extraction of the reflection amplitude, the
phase determination at each wavevector depending only
on data at that point.

Another method, introduced here, requires only a
single spectrum but is restricted to mirror symmetric
films, i.e., films which present the same scattering
length density profile from either direction, and it does
entail non-local transformation of the data.

Knowledge of the complex reflection coefficient
enables direct inversion of neutron reflectometry using
the Gel'fand-Levitan-Marchenko (GLM) integral
equation or related methods.>®

We lay general groundwork in Sec.2 and specialize to
the case of mirror symmetry in Sec.3. The GLM
equation is discussed in Sec.4 with a model application.

§.2. Formalism: the Transfer Matrix

The theory of specular reflectivity from a film can be
cast as the problem of solving a 1-dimensional
Schrodinger equation for the variation of the wave
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function along the direction normal to the surface,
conventionally taken as the z-axis:

_d'y(k,,2)

@y (k) = k}w(k,,z) Q)

where
q(z) = 4mp(z) @)

and where p (2) is the neutron scattering length density.
The wavevector k, is the z-component of the incident
wavevector. In the most general case, the potential g(z)
may be supported on the whole z-line, but here we
consider only the more restrictive, but still very useful,
case of potentials having compact support on 0 <z < L;
1.e., q(z)=0 for z<0 and z>L, where L is the thickness of
the film, which we will assume is known. The
subsequent formulation also assumes that the film is
freely supported, i.e., that the fronting and backing
media are vacuum. Finally, we take ¢(z) to be real-
valued, which usually is a very good approximation for
neutrons.  In Sec.3 we will make further restrictions to
mirror-symmetric and non-negative potentials. Thus,
for the potentials of concern, the physical solution of
Eq.(1) has canonical forms outside the support of ¢(z),
namely,

wik,,z) =" +r(k)e ™,z <0, (3a)

and

y(k,,z)

where r (k) and ¢ (k.) are the complex reflection and
transmission coefficients, respectively. The measured
reflectivity is | (k). Among the several means of
solution methods available for Eq. (1) in [0,L] we use the
transfer matrix method, which proves to be a particularly
convenient analytical tool for our purposes.

= t(k)e*,z > L, (3b)
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The transfer matrix* is a 2x2 matrix which gives a
concise connection between the disjoint solutions in
Eq.(3). The requirements of continuity of y(k.z) and
v’ (k.,z) at z= 0 and at z = L provide a determination of
r(k.) and t(k.) in terms of the four elements of the
transfer matrix, by analogy to the effect of the boundary
conditions across a single interface. Thusfor0<z</,

let
x(k,,z) = M(k,,z) x(k,,0), )
where
| wlk.,2) j )
Z(k.nz) - (kz_ll‘l/' (kz,Z) > ©)
and
Alk.,z) Blk.,z
Mkzaz)=( (k.2) Bk )) (6)
Uk,,z) Dk,,z)

is the transfer matrix. Consistency at z=0 demands

M(k,,0)=1 @)

The evolution of M(k.,z) is obtained by differentiating
Eq.(5) and using Eq.(1), which leads to

w = T'(k,, 2)M(k,, 2), @)

where
T(k )—( 0 kfj 9
25 kg -k, o) ®)

The solution of Eq.(8) is unique, subject to the initial
value, Eq.(7).

For real-valued potentials, M(k,,z) is real for all real k..
Also, M(k,,z) is unimodular, i.e.,

AD - BC =1 (10)

To derive this, differentiate AD-CD with respect to z,
then use Eqgs.(8) and (7).

Substitution of Eq.(3) into Eq.(4) gives two equations
for  (k.) and ¢ (k.), which have solutions

__B+C+i(D-4)
B-C+i(D+ A4)°

(11a)

and

2ie” %<t

l =
B-C+i(D+ A)’

(11b)

and where it can be confirmed that | »|*+| ¢ |*=1. Since
M is real, the complex natures of » and ¢ are made

explicit by Eq.(11). We also note for later use that
A(k.,z) - B(k
M(-k,,z) :[ (k..2) ( z’z)), (12)
- C(k,,z) D(k,2)

which follows from Eq.(4), and thus from Eq.(11), that
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r(=k,) =r*(k,), (13a)

and

1(~k,) = 1 * (k). (13b)

§.3. Determining Phase for Symmetric Potentials
For mirror-symmetric potentials, which satisfy ¢(z) =
q(L-z), it can be shown that”’

D(k,,L)= A(k,,L) (14)
thus
N B+ C
yoE (153)
B—-C +2i4
and
~ 2ie%t i
[ (15b)
B-C+2i4

where (") signifies this special case of » and . Now
Pl sh-s
7]

= e

r _B+C wLo
4 2i

Thus

e‘(&,‘&l )‘k:L

=31 Hf'z (B +C).

20lF
With the help of Eq.(10) it can be shown that "'?

17)

~12
2 ﬁer:Z =B +C*+24°, (18)
—|r

so that, again using Eq.(10),
+ 2|7|
VIHAF

Therefore, from Eq.(17),

B+C= 19)

bkl _ 4 20)

Before going to the next step, it is useful to have the
limiting behaviors of M(k.,z) as k, — 0 and k., — c. It
can be shown from Eq.(8) that

O(l_), O(kZ)j; 1)
Ok;) O

e, A - 0(1), D— 01), B—0,and C - «. Here
O(1)=0(k,%) means a finite value, independent of ..

Also,
lim M(k,, L) = ( Sm(kzL));(zz)
ke -0 cos(k,L)

fm Mk 1) =

cos(k.L)

- sin(k,L)
Le, A > D — cos(k,L), and B — -C — sin(k.L). In
particular, since C(k, L) — o as k, — 0, it follows that

kl}l_rﬂ) r(k,) = -1, (23a)
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and

31210 t(k,) = -10(k,), (23b)
and thus we may define

$,(0) = —x (24a)
and

$,(0) = —x/2. (24b)

These limits are quite general for real, compactly-
supported potentials.  Therefore from Eq.(20) and
Eq.(24) we have in the present case,

B(k.) = (k) - % + kL, 25)

where we have chosen the branch of Eq.(20) which is

consistent with Eq.(24). Also, whenever )A'(k:) passes
through the origin of the Argand diagram, i.e., the graph
of the parametric curve ;”(k,) Vs. )A"(k,), the phase angle
decreases by 7. Then Eq.(25) becomes

A A

B(k,) = §(k,) - % +kL-nr, 26)

for k, < k, < k.1, where r(k,) = 0 for n =1,2,...; and
where n=0 for k, < k,. In general, compactly-supported,
symmetric potentials produce such zeros, where k,L —
nmras n —w. 'V Thus ?é,(k,.) effectively lies within the
interval [-772, 7/2] as k, —o.

The phase of ?(k,) is obtained from a logarithmic
dispersion relation.'*'® It is well-known that in the
absence of bound states, (k) (and also r(k.)) is analytic

in the upper half k.-plane.>® Furthermore, from
Eqs.(22),
. 2ie "k
lim #(k,) = — - =1 @D
ky >t 2sin(k,L) + 2i cos(k.L)
It then follows from analytic continuation that
lim #(k,) =1 (28)

|k, >

for Im k; 2 0.  Thus limyg. In #(k;)=0 in the upper
half-plane. Moreover, one sees from Eq.(11b) that #(k.)
has no zeros in the upper half plane, so that In #(k,) is
finite for Im %, > 0 and vanishes uniformly on the upper
infinite semicircle. It follows' that In t(k,) satisfies a
dispersion relation, which relates its imaginary part,

25,(1(:). to the Hilbert transform of its real part,

In|z(k,)|= Iny/1-|7(k.)[* ; namely,
o In/1-|r(k,")]
4,(k) = _lppj' . ; |r§( g o9)
7[ - z - z

Although #(0)=0, the resulting divergence in In |t(k,)| is
integrable in Eq.(29). One notices that this result is

quite general for real, finite, non-negative compactly-
supported ¢(z), since such potentials can not have bound
states, and they guarantee the “good” behavior needed for
the dispersion relation. In particular, it also holds for
our restriction to mirror-symmetric potentials, so that
one may rewrite Eq.(29) with (*)s.

Equations (26) and (29) comprise the algorithm for
obtaining the phase of reflection from a reflectivity
spectrum for the special but useful class of real, non-
negative, compactly-supported potentials which are also
mirror-symmetric, but which otherwise may have quite
arbitrary shape. For computational purposes Eq.(29)
may be rewritten as

k, oo e In(e(k, A2k )1 5,
4(k.) = -—+PP [ P
(30)
The relation in Eq.(26) is interesting, as well as useful.
One sees from Eq.(27) that

lim ¢,(k,) = 0, 31)

which may also be inferred from Eq.(29), since the
numerator of the integrand is everywhere finite or
integrable. Thus from Eq.(26),

. o T
lim ¢, (k,)=——+k,L—nmr. (32)
k,—>o - 2 N
Now it is well known that the limit of the scattering as &,
—o is given exactly by the Born approximation (BA).

Thus Eqgs.(26), (31), and (32) imply

8. (k) = ¢(k)+ §7 (k). (33)

Indeed, in the Born approximation,

P = o " e g (2)dz
i, (34)
= 20k, IO e "“q(z)dz
for q(z) = q(L-z). 'This can be written as
FPK,) = €D F k), ()
where jA”(k,) is real, so that
(k) = —-’i’- + kL - nm, (36)

as in Eq.(33).
the contribution to the phase of lr\(k:) caused by

Thus for mirror-symmetric potentials,

dynamical scattering is entirely the phase of ?(k:).

§.4. Inverting the Reflection Spectrum
$.4.1. The GLM Equation

We have seen that for film potentials g(z) of known
thickness L which are non-negative and symmetric about

z = L/2, the complex reflection coefficient ;(k,) can be
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reconstructed from the reflectivity spectrum |r(k:) [
namely,

P(k,) = €% O\P(k,), 37)

where 25,(k,) is determined from |;(k,) |; using Eqs.(26)
and (30). Knowledge of r(k.) is sufficient to “invert”
the spectrum, i.e., to determine ¢(z) uniquely for
potentials that do not support bound states and which are
sufficiently regular, such as those having compact
support. The prototype for formal inversion is the
Gel'fand-Levitan-Marchenko (GLM) equation,” which
for the case of real, non-negative, compactly-supported
potentials, can be written as

K(z,y)+R(x+y)+ I_z K(z,x)R(x +y)dx =0,
(38)

for y < z. Here the “real space reflection coefficient”
R(2) is
ik z ik.z k
R(z)= j r(k,)e" Rej r(k,)e" ==
(39

where the second equality results from Eq.(13), so that
R(z) is real. The function K(z,y) in the GLM equation
is known as the Povzner-Levitan (PL) kernal * and
satisfies K(z,y)=0 for z < 0, and for -z <y <z when z > 0.
Thus from Eq.(38),

R(z)=0
which also follows from Eq.(39) and the analyticity of

r(k;) in the upper half plane. Thus the GLM equation
may be rewritten as

forz<0, (40)

K(z,y) + R(x + y) + jo“yK(z,x — Y)R(x)dx = 0.

(41)
The PL kernal'® also has the remarkable property,”
dK(z,z
q(z)=2——"— ), (42)
dz

Thus ¢(z) is known once the PL kernal is known. In
our problem, then, the inversion of |lr\(k,) |* starts with the

determination of ;L(k,) using the algorithm of Sec.3 --the
only step that depends on the restriction to symmetric
potentials---proceeds to the computation of R(z) using
Egs.(37) and (39), and culminates in the solution of the
GLM equation for the PL kernal and the extraction of
q(z) by Eq.(42).

There is an interesting way of interpreting the latter
part of this process.  Recall from Eq.(34) that in the
Born approximation

2ik ™ (k,) = f q(2)e**dz. (43)

Taking the inverse Fourier transform of both sides leads
to

N. F. BErk and C. F. MAJKRZAK

d (> py —ik 1 z
-2— | r*(k)e " dk. = —q(-), 44
Lt ke A =g, @

and thus, comparing with Eq.(42), to
K(z,z) = -R™(22). (45)

That is, the diagonal of the exact PL kernal is the
negative of the Born approximation to the real space
reflection coefficient. One might say, therefore, that the
function of solving the GLM equation for K{(z,y) is to
“reduce” the exact real space reflection coefficient to the
Born approximation, which is easily inverted for g(z); in
other words, the GLM equation effectively removes the
dynamical scattering from R(z). To go a bit further, set
y=zinEq.(41) to get

K(z,2) + R(22) + j:k(z,x — 2)R(x)dx = 0. (46)

Then as z — 0, the integral vanishes and

lin(}R(2z) =-K(z,2) = R™(2z). 47

Thus the Born approximation is exact in a neighborhood
of the leading edge of the potential.

§.4.2. A Solution Method

Much of the literature on solving the GLM and related
equations deals with exploiting special assumptions
about the analytic behavior of the real space reflection
coefficient R(z).'” For the general case, numerical
solution methods boil down to replacing the integral
equation by a discrete matrix equation,'® which we will
not discuss, or to iteration on the “0O-th” order solution

K®(z,y)=-R(z +Y), (48)

which, as we have seen in Eq.(47), becomes exact as y —
z and z — 0 for potentials supported on [0,L]. In the
next stage of iteration, one then would have

KO(z,y)==R(z+y) - [ Rz +x - y)R(x)dkx,

(49)
and so on. We have found that this straightforward
iteration scheme is well-adapted to implementation in
symbolic mathematical software packages, such as are
commercially available.  One may take advantage of
knowing the thickness L and the fact that K(z,y) fory <z
and z < L depends only on R(x) for 0 < x < 2L. We
approximate the computed R(x) in [0,2L] by an
interpolating spline on N segments bounded by N+1
knots, xo=0, xi, ..., xy=2L; i.e..

R(x) = Y R,(x), (50)

where
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Fig.1. Simulated reflectivity spectrum (600 points) for
model potential, shown in inset
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Fig.2. Computed phase of reflection (solid line); computed
phase of transmission (dashed line).

~ R <
R ()= {0 B 26 <5) (51)
0, (otherwise)

Taking Eq.(50) as an exact representation of R(x) allows
us to write the GLM equation as

K@) =-RG:+)-3 [7 Kox- )R, (e

m=1
+ [TK (x,x - )R, (x)ex,

(52)

for x,1/2 < z < x,/2. Thus when n=12, ... N in
sequence, the second term on the rhs involves K(z,x-y)
on previously determined segments, and the unknown -
th segment appears only in the last integral. ~ The form
of Eq.(52) also requires x,; < z+y < x, and in the last
term that x,; < x < z+y. Such constraints, although
awkward in a numerical procedure, are transparent to a
symbolic method when the segmental R,(x) are given as
explicit polynomials. We need only iterate Eq.(52)

o5+ eeseeseeeoas -

04 — (/ —
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Fig.3. Computed real space reflection coefficient using 600
reflectivity points (heavy line); same using 300 points (light
dash line) and for 200 points (light solid line); theoretical
K(x/2,x/2) (heavy dashed line).
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Fig4. Potential from GLM equation. Results for 0, 1, 2,
and 3 iterations are shown in order from bottom (heavy
lines); model potential (heavy dashed line); result from data
truncation at 200 points (light dashed line).

symbolically on R,(x) in the currently unknown segment;
the resulting polynomial at each stage is available for all
x, y, and z, and the required constraints can applied at
the end of the entire process for each segment to
complete the chain:

R,(x) > K, (z,y) > K, (z,2) > q,(z)  (53)

forn=1,2,...,N in sequence.

There remains the question of choosing the degree of
interpolating spline to approximate R(x). Use of 0-
degree splines, as in rectangular representations, gives
discontinuous R(x) and K(z,z), and thus leads to
undesirable singularities at the knots when Eq.(42) is
applied.  First-degree (linear) splines are continuous
and lead to continuous K(z,z), but the resulting ¢(z) will
display discontinuities at the knots.  Higher degree
splines lead to smoother representations of ¢(z), but the
concomitant overhead of symbolic computation increases
rapidly, and high order interpolation can bring spurious
structure into the approximation, which, in any case,
need not be of better quality than the inference of R(x)
from the data. Linear interpolation seems a reasonable
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compromise of competing concerns, and is easy to

implement. In each segment we take

R.(x)=a,+b,x, (54)
where

. = an(xn—l) _ xn—lR(un) , (553)
xn - xn-]
and
R(x )— R(x
b == ( n) ( n—l)' (55b)

n

xn - xn—l

$.4.3. Example

We illustrate the method with the model potential
drawn in the inset to Fig. 1, which on its support, 0 < z
<L, has the formula,

f/L+1/2), z<1I/2,

9L =05+ FG/L-1)2), z>L)2,

(56a)

where
f(x)=3x(1-x).

This potential is moderately strong, with gL* = 1, where
is the average value of g(z) over [0,L].  The computed
model reflectivity spectrum is shown in Fig.l,
comprising 600 points with uniform spacing, A k.L =
0.1. The full range of data shown likely reaches the
limits of instrumental feasiblity for the forseeable future.
The spectrum was calculated using a standard technique
of binning the potential on a fine scale and composing
the transfer matrix as a product of transfer matrices for
each bin.

These data were used to compute the reflection phase,
@,(k;), shown in Fig.2. First the transmission phase,
¢ «k;), was computed from Eq.(30). Numerical
integrations were done by a commercial mathematical
package. The reflection phase then was composed from
Eq.(26); the zeros of the spectrum were determined by
visual inspection and were taken as the nearest tabulated
k.L values.

The resulting real space reflection coefficient, R(x),
was computed from Eq.(39) using a commercial FFT
algorithm. This is shown in Fig.3, along with -R®4(x),
which is obtained directly from the model potential by
integrating Eq.(44). The goal of solving the GLM
equation is to “lift” the heavy line in the figure onto the
dashed line, -R™*(x) = K(x/2,x/2).

Finally, the numerical solution of the GLM equation
for g(z) is shown in Fig.4. The input R(x) was fit by an
interpolating linear spline, as in Eq.(54). The x-
interval [0,2L] was divided into 19 uniform segments,
determined---via the Fourier transform---by the effective
real space resolution, A x = 27n/k, e The thick lines
show the progression of the iterative process, starting
with O iterations at the bottom; this is the potential that
results if one assumes that R(x) = R®*(x). The process

(56b)
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effectively converges over [0,] after 3 iterations, shown
at the top. Notice, however, that the solution essentially
converges over the first half of the interval in 1 iteration.
The jagged nature of the solution results from the
polynomial representation within each segment, as
discussed in Sec.4.2.

The figures also show results for truncation of the
model data at k. = 30 (300 points) and k.L = 20 (200
points). In Fig.4, these are determined on the same
resolution as for the full data set, k.L = 60, although
lower resolution solutions would be appropriate for the
smaller data sets. Actually, at this resolution the
potentials determined from 600 and 300 points are
nearly identical, and even the result using only 200
points is good over the first half of the support. Indeed,
it is worth pointing out that since the otherwise unknown
potential is known by construction to be symmetric,'? its
shape in fact is determined in the half-interval [0,L/2];
and this apparently can be ascertained reasonably well
from a data set of achievable range and quality.
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