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Theoretical and experimental studies of dynamical diffraction phenomena of neutrons and X-rays by single crystals have
been made from new points of view. Based on the dynamical diffraction theory we have developed, new properties of the
rocking curve and the Fresnel reflectivity curve are explained. The rocking curve in the symmetric Bragg-case has a
possibility to give a precise value of scattering amplitudes when it is given as a function of perpendicular momentum
transfer. It is shown that the Fresnel reflectivity curve is identical to the Darwin curve with an appropriate transformation.
It is also shown that in the case of non-absorbing thick crystals the Ewald formula can be obtained by summing up the
intensity of incoherent beams successively reflected at the front and rear surfaces. This interpretation gives a simple
relation of the Ewald formula to the Darwin formula. A double Stern-Gerlach experiment is proposed by using a new type

of crystal interferometer.
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§.1. Introduction

Diffraction and scattering phenomena of neutrons and
X-rays have been used for studying the structure of
materials. The measurement of rocking curves has been
used to study the structure of crystals, superlattices, mirrors
and so on.'™ The Fresnel reflectivity curve near the critical
angle of total reflection gives information on the
perpendicular structure near the surface of various kinds of
materials.*”” It has been found that CTR(Crystal
Truncation Rod) scattering is sensitive to the structure of
crystal surfaces.®'®  Hitherto, different theoretical
approaches have been used to analyze those kinds of data.

Recently we have developed a dynamical theory of X-ray
diffraction'"'® which is applicable to Bragg diffraction,
Fresnel reflectivity, and CTR scattering. The theory has
been constructed on the basis of the Darwin theory in a
matrix form,'>'* and the results can be easily applied to the
neutron cases.

In this paper, first we show some properties of the
rocking curve and the Fresnel reflectivity curve based on
the theory we have developed. Next we show results on
measurements of neutron rocking curves by perfect silicon
crystals, and show a new interpretation of the diffraction
process. Finally, we propose an experiment on
measurement theory in quantum mechanics using an LLL
interferometer.

§.2. Extended Darwin Theory

In the Darwin theory,'® a crystal is divided into layers
parallel to the crystal surface, and the effect of multiple
reflection between the layers is taken into the difference
equations. Therefore the Darwin theory is suited for
treating the diffracted intensities from a substance with a
layered structure and a crystal with a different structure on
its surface.  For this reason, the Darwin theory has
attracted renewed interests in combination with a matrix
method."”

We have combined the Darwin theory with the idea of the
reciprocal rod, that is, the truncation rod. As a result of
this, we have succeeded in deriving expressions which can
give the diffracted intensities along the rod from Bragg
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point to Bragg point even in the case of asymmetric
geometry.'?

One of the great differences from the conventional
theory'®?" is that one needs the direction of the diffracted
beam & for a given incidence direction &, to obtain the
diffracted intensity. This point can be solved if one notices
that the measurement of the rocking curve near the Bragg
point corresponds to the intensity variation along the
reciprocal rod elongated from the Bragg point not only in
the symmetric case but also in the asymmetric case.

2.1 General Expression for the Bragg-Case

Once one knows the direction of the exit beam for a given
incidence condition, one can calculate the reflection and
transmission coefficients by a single atomic layer. Then
one can solve the difference equations using the matrix
method.

In this paper, we discuss only the result on a perfect
crystal. Here we show the result on the reflection
coefficient from a semi-infinite crystal in the Bragg-case.
A general expression of the reflection coefficient Ry, is
given by
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i

A . 1
5 d v, exp(i2zl) + EFO(I -b)

= - - (2 +2)
|| ITF,F; exp(—i2z D]
with
okt (2.3)
14

Here A is the wavelength, d is the distance between the
layers, and r. is the classical electron radius for X-rays and
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one for neutrons. The polarization factor C in the case of
X-rays is one for neutrons. The asymmetric factor b is
defined by b = %/, using direction cosines of the incident
beam y, = cosé and the diffracted beam yy = cos@y . Vis
the volume of the unit cell. It is noted that the unit cell of
the crystal is always defined to be parallel to the surface.

The index H represents the indices 4k/; the indices /4 and
k designate the reciprocal rod arising from the two-
dimensional periodicity of the layer and take the value of
integers, and the index / denotes a point on the #k rod. The
value of the index / coincides with an integer at the
kinematical Bragg condition, but does not necessarily take
the value of integer. Thus the structure factor Fj is
calculated for the point / on the 4k rod.

The index / corresponds to a perpendicular momentum
transfer normalized by the reciprocal vector perpendicular
to the crystal surface @5, and is given by

l:COSQO_SOSQH_ 5, 4}
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In this theory, effect of the surface structure on the
intensity is easily taken into account as the products of
matrices characterizing each surface layer.

2.2 Relationship With the Conventional Diffraction
Theory

Since the index / takes the value of integer at a Bragg
point, exp(i2n /) is approximated to 1 + 2w (/ - /) near
the Bragg point denoted by / = /,,,. Then the deviation
parameter 7 given by eq.(2.2) is approximated to
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and the reflection coefficient is given by
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since exp(i2n /) = 1.
One can easily obtain the well-known deviation
parameter'®
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by expanding eq.(2.5) around the kinematical Bragg angle
G5 up to the first order term on A8, = 6)-Gs.
2.3 Specular Reflection

The expression of the reflection coefficient given by
eq.(2.1) is valid for any incidence condition. Figure 1
shows the reflectivities of neutrons and o-polarized X-rays
with a wavelength of 1.0 A as a function of the index /
calculated from eq.(2.1) for the 00 rod of the Si(111)
surface terminated by the unreconstructed double-layer.
The peaks mean the Bragg reflections, and their tails
correspond to the CTR scattering.
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Fig.1. Reflectivities of neutrons and cpolarized X-rays as a
function of J, calculated by eq.(2.1) along the 00 rod, for the
Si(111) crystal terminated by the ideal double-layer.
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Fig.2. Neutron rocking curves in £scale for 111 reflections of
St and Ge.
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Fig.3. Effect of anomalous scattering on the X-ray rocking
curve of Ge 111 reflections in £scale.
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From eq.(2.2), one can show that the reflectivity curve in
I-scale is independent on the wavelength in the case of
symmetric geometry, that is, 3 = ||, neglecting the effect
of anomalous scattering in the case of X-rays. This
indicates that the rocking curve near the Bragg point as a
function of /, instead of 7 or &, reflects more directly the
scattering lengths of atoms.
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Fig. 4. X-ray rocking curves as a function of incident angle 8,
satisfying the condition of @y = 90°.
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Fig. 5. Ewald construction in the case of 8y = 90°.

1.0 - : ,
——2.09037 A
0.8 ———2.090364 T
=S I IR NEP PSS 2.09034 A
S 06 4
5
w
T 04 .
w
[+
\
0.2 \ i
\
\\
0.0 il
7.0000 7.0001  7.0002  7.0003  7.0004

/

Fig. 6. X-ray rocking curves in £scale corresponding to those in
Fig. 4.

Figure 2 shows the calculated neutron rocking curves
near the 111 Bragg point of Si(111) and Ge(111) crystals as
a function of /. The value of / which gives the center of the
Bragg peak shifts slightly from the integer due to the

refraction effect. The difference in width between the
Darwin curves of Si and Ge is due to that in value between
the nuclear scattering lengths. Therefore precise
measurements of the rocking curve in /-scale have the
possibility of giving the value of the magnetic scattering
amplitudes in the case of neutron diffraction and the
anomalous scattering amplitudes in the case of X-ray
diffraction.

Figure 3 simulates the rocking curves in /-scale for Ge
111 reflections of X-rays with wavelengths around the K-
absorption edge: 0.84, 1.1A and 1.4A. The difference of
profiles reflects that of anomalous scattering factors.

2.4. Bragg Condition of g = 90°

Diffraction phenomena of the Bragg condition of 65 =
90° have been studied extensively in the conventional
theory because the Darwin width increases remarkably as
the Bragg angle approaches to 90°.>*?? In X-ray standing
wave method,”?® this nature is utilized to apply the
method to wide variety of samples.

In this geometry, however, the conventional theory
requires special treatment of the dispersion surface. In the
present theory, however, one can deal with such diffraction
condition without special treatment by using eq.(2.5).

One of the features on this condition is that anomalous
changes in the rocking curve appear in angle-scan mode
but disappear in wavelength-scan mode. Figure 4
demonstrates an example of such rocking curves of 511
reflections in the case of X-rays: thick solid line for
2.09037 A, solid line for 2.09036 A and broken line for
2.09034 A, This fact is easily understood if one describes
the diffraction condition by the intersection of the Ewald
sphere with the rod as shown in Fig. 5. The rocking curves
in /-scale are shown in Fig. 6. In this scale, all the curves
coincides among themselves because y = || even in the
case of asymmetric geometry illustrated in Fig. 6.

Another feature is that the Darwin width @ on this
condition is proportional to

w = 2T F|

while that in the ordinary condition is proportional to
I'|F,|. This is understood from a point that the
approximation given by eq.(2.7) fails when sin20 g
approaches to zero. The deviation parameter in this
condition should be approximated to

n=[-bsin26,A6,

(2.8)
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by expanding eq.(2.5) up to the second order of Afy. From
this equation, one can show that the Darwin width in this
condition is given by the relation of eq.(2.8).
2.5. Fresnel Reflectivity

In the Darwin theory, the transmission and reflection
coefficients from a single layer diverge at an extreme
grazing incidence condition. Therefore, strictly speaking,
the present theory breaks in the region of total reflection.
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If, however, we start from the relation given by eq.(2.5), we
can extract the Fresnel formula as follows.
The deviation parameter 7 is expressed as
cos’ 6, - &S
n=-——>32—, (2.10)
1)

assuming that Fy = Fg= F,in eq.(2.5). Here Jis defined
by

1
6=—1IF,, (2.11)
2
and related to the refractive index n by
n”=1-25 . (2.12)
Then the reflection coefficient is given by
Ry, =-[n¥F (' -1)"] (2.13)
cosf,—/n’ — sin® 6,
= (2.14)

cos¢90+\/n2 — sin’ 6,

This means that the Fresnel reflectivity curve has the
same profile as the Darwin curve in 7-scale. The critical
angle of total reflection corresponds to the condition of 7=
-1, that is, cos?@, = 28. If we interpret the total reflection as
a special case of Bragg diffraction, there is some
resemblance between total reflection and Bragg reflection
of 05 = 90° because the condition of sin2 g = 0 is satisfied.
In this situation, the region of total reflection w, that is, the
critical angle, is proportional to

w=I'F, (2.15)

Fig. 7 shows the total reflection curve together with the
field intensity at the surface as a function of 7' = Re(7).

In the case of neutrons, the reflectivity curve is usually
given as a function of perpendicular momentum transfer
because the curve in this representation is independent on
the wavelength. This fact is consistent with the result
given in section 2.3.

§.3. Interpretation of the Ewald Curve

Diffraction phenomena of neutrons by a perfect crystal
are explained by the dynamical theory.”**" The diffracted
intensity of neutrons from non-absorbing crystals in the
Bragg-case is usually explained by the Ewald formula®”
expressed as

1® _ i for|n|< 1
i 1-(1-7%)"  for|n>1

Here 7 is given by the deviation parameter indicated by
€q.(2.7). Total reflection occurs in the region of |7] < 1.

In contrast, the diffracted intensity of the Darwin curve in
the case of symmetric diffraction is given by
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Fig. 7. X-ray Fresnel reflectivity curve in rpscale and field
intensity at the surface.
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Fig. 8. Interpretation of diffraction process of neutrons by a
non-absorbing thick crystal.
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The profiles of the two rocking curves given by egs.(3.1)
and (3.2) differ considerably in their tail parts, and the
Ewald formula gives twice the value of the Darwin formula
at their far tails. Although experiments on the rocking
curve have already been carried out,*>*""**3" relationship
of the Ewald formula with the Darwin formula has been
seldom studied.

The Ewald formula is usually obtained from the rocking
curve which gives intensity from a finite crystal by taking
the average over oscillations on the crystal thickness.!”-**2"
It is noted that this procedure is valid only when the
reflected waves at the front and rear surfaces overlap
coherently.  However, this condition is broken in the
ordinary experimental  situation where the crystal
thickness is much larger than the coherence length of
neutrons.

Then the diffraction process should be explained by
successive reflections at the front and rear surfaces as
illustrated in Fig. 8.°” The intensity of the transmitted
beam through the rear surface 7, is given by

10,1 :(1—1]-{,])2 (3.3)

in the case of non-absorbing crystals.*®  The beam

reflected at the rear surface propagates toward the front
surface, and the reflective intensity 7, is given by

(l_lH,])ZIH.l : (3.4)
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Thus the intensity of all the reflected beams is given by

iIHn [Hl

— (3.5)
p 1+ 1y,

The diffracted intensity / p; should correspond to the
Darwin formula / 4™ given by eq.(3.2). Then one can
show that eq.(3.5) is equivalent to the Ewald formula.
Therefore a simple relation of

®)
I =L(D) (3.6)
1+ 1

is obtained between the Darwin and Ewald formulae.
Similarly, the intensity of all the transmitted beams is
given by

[(D)

1+1(D)
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(3.7)

Experiments to test these relations were done at the
beam-line C1-3 (ULS) in JRR-3M constructed for
experiments on ultra-small angle neutron scattering and
neutron optics. The double-crystal parallel setting of 111
reflection of Si crystals was used with the wavelength of
473A. A channel-cut Si crystal using five successive
reflections was adopted as the first crystal to reduce
extremely the tail part of the incident beam on the second
crystal.

The experiments were performed using two sample
crystals with thicknesses of 10 mm and 1.4 mm, much
larger than the coherence length. The first experiment was
done using the crystal of 10 mm thickness. A slit was
placed behind the sample crystal so that only the reflected
beam 7 5, is detected by a *He detector. In the second
experiment, the crystal of 1.4 mm thickness was used and
the slit was removed so as to detect significant parts of all
the reflected beams /5 ,. The experimental result is shown
in Fig. 9. Solid and broken curves were calculated based on
eq.(3.2) and eq.(3.6), respectively, with the convolution of
the reflectivity curve of the first crystal, 7 ;©°.  The
experimental results agree well with the calculated ones.

The intensity of the transmitted beam has been also
measured. Fig. 10 shows the intensity of all the forward
diffracted beams in the case of the crystal of 1.4 mm
thickness. The broken line was calculated by eq.(3.7). For
comparison, the intensity of 1-/ 4, is shown by the solid
line.

§.4. Proposed Test of Double Stern-Gerlach
Experiments

Neutron interferometers made of Si crystals have been
used to various kinds of experiments.”>*'** In particular
they are suited for investigating the measurement theory in
quantum mechanics.  For instance, an experimental
proposal on a double Stern-Gerlach experiment®>® has
been done to test the superiority of measurement theories
such as the many Hilbert theory®” and the environment
theory.”” An experimental test has been proposed by using
an interferometer made of multilayers. *”
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Fig. 9. Neutron rocking curves as a function of incident angle.
Solid circles mean the reflectivity of a 10 mm thick crystal
with a slit installed. Open circles represent the reflectivity of
a 1.4 mm thick crystal while the slit was removed. Solid and
broken curves were calculated based on eqs.(3.2) and (3.1),
respectively.
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Fig. 10. Neutron rocking curve of the transmitted beam in the
Bragg~case for a crystal with 1.4 mm thickness.

Here we propose a new type of interferometer made of
perfect Si crystal designed for the double Stern-Gerlach
experiment, as shown in Fig. 11. It consists of five crystal
plates, three plates of which in the center work as the
LLL-interferometer and function as the controller of
neutron polarization states when a magnetic phase shifter
with an appropriate thickness is inserted due to the effect of
magnetic double refraction.>**? Therefore a test
experiment whether interference occurs or not when
unpolarized neutrons are decomposed at the components of
LLL crystals will be possible.

§.5. Summary

Based on a new dynamical theory, we showed some
properties of the reflectivity curve in the symmetric
geometry, the Bragg diffraction of 85 = 90°, and the Fresnel
reflectivity curve. We also showed a simple relation
between the Ewald formula and the Darwin formula in the
case of non-absorbing crystals. A test on the double
Stern-Gerlach experiment was proposed.
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