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The usucJ seeding equations at a phase trsmsition, employed out of their usucd vahdity rjuige,
with Tc a negative constant, fit the susceptibility and the specific heat of these systems of the
Non-Fermi Liquid (N.F.L.) window (0.4 < a; < 0.6) where no long range order is observed in
Ce(Rui_3:Rhi)2Si2. On either side of this window, the same equations also fit the susceptibihty
of these systems which order, provided the temperature is larger than the Neel temperature Tn.
The exponents 7 depend on x but seem to approach universal values for these concentrations of
the N.F.L. window where Tn(x) cancels.
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§1. Introduction

For concentrations x > 0.6 the Ce(Rui_j:Rha;)2Si2
system is antiferromagnetic at low temperatures. For
0.05 < X < 0.4 it features spin density waves. The
Neel temperature decays and cancels on approaching ei
ther side of the concentration window 0.4 < x < 0.6.

The alloys in this window do not order and are accepted
examples of Non-Fermi Liquid (N.F.L.) behaviour. In
a previous paper, we have analysed the susceptibility
x(T) and the specific heat Cp{T) of the x = 0.4 and x =
0.5 alloys of the N.F.L. window with the same scaling
expressions which we would have used near a standard
(ferromagnetic) transition: assuming in this case a cor
relation length ̂  which diverges like^'
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mo = (1 - 7;/T)-^ (1.1)
we deduce

xT/C=il-Tc/T)-\ (1.2)

CpT^/A={l-Te/Tm, (1.3)
which reflect the singularity of ̂  at Tg.

Differentiating the equation (1.2) or (1.3) we find al
ternatively
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dlnixT) 7^0 ' ^ '
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The equations (1.1) to (1.3) are valid when d\nT/d\n[xT)
or d In T/d In(Cpr^) is a linear function of T and the cor
responding parameters Tc and 7"^ (or Tc and a~^) are
the intersections of the straight line with the axes.^)
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Fig. 1. For the concentrations x = 0.4 and x = 0.5 of the N.F.L.
window d\nT/d\n(xT) aims a negative Tc = —Tk where it
would cancel and extrapolates to I/7 slightly larger than one
when T cancels. All other data in their paramagnetic regime
for T > Tpf[x) can be fitted with a concentration dependent
7(a:) > 7.

§2. Results

In the N.F.L. systems x = 0.4 and x = 0.5 we found^^
that dlnT/d\n{{x — XD)T) is a linear function of T from
below 2 K to over 200 K, almost 1 decade over the range
to which we have, for clarity, restricted our attention in
figures 1 and 2. We notice that Tc = —Tk is a negative
constant. It follows that the susceptibility x is well fitted
by the equation

{x-Xd)T=C{1 + Tk/T)-\ (2.1)

where Tk, 7, C and xd are given in Table I. C is the
high temperature Curie constant and xd a small dia-
magnetic contribution of the lattice which is easily de
termined at high temperatures where the variation of



Scaling near a "Quantum" Phase Transition: An Analysis of the Susceptibility 61

Table I. On the upper four rows we give, for different concentrations x in Rh, the Neel temperature Tn and the parameters XD, C,
Tk and 7 which we deduced from our fit of the c axis susceptibility of Ce(Rui_iRhi)2Si2 monocrystals with equation (2.1). The
additional parameters A and a were deduced from our fit of the specific heat with equation (2.2) and the same value of Tx imposed.
On the lower row we give Tx, A and a which we deduced from our fit to the specific heat data of Ldhneysen e( al. in CeCus.g Auq.i .
We have neglected the crystal field contribution ACp(T) in equation (2.2) in all cases.
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XdT becomes dominant when xT reaches its constant
limit C (see Fig. 2).
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Fig. 2. The equation (1.2) fits the susceptibility at all tempera
tures for the alloys x = 0.4 and x = 0.5 of the N.F.L. window

with Tc = —Tx and with exponents 7 close to one but smaller
than one (see Table I) which account for the observed mild di
vergence of x(T) when T cancels. On either side of the N.F.L.
window the same equation still describes the data at all T >

with a larger exponent which depends on x. For 7(x) > 1 our
model predicts a susceptibility whose continuation below Tx

would reach a maximum and then decay to zero. For clarity
the data are shifted by a constant A = 0.005 for the concen

trations X = 0.4 and x = 0.5 of the N.F.L. window and A = 0

otherwise.

The specific heat similarly can be fitted with

{Cp{T)-Ci,n)T^ = + +ACp{T)T\ (2.2)

where A and a are also given in Table I for Tx deduced
from the susceptibility imposed. We took Ciatt which fits
the measured heat capacity of the non-magnetic isoelec-
tronic system LaRu2Si2.^^ The excess term ACp(T) has
the shape and the magnitude expected for the incipient
contribution due to the splitting, by the crystalline field
of the magnetic levels of Ce. It is small in our range and
will be neglected in the present discussion.

It turns out that in both systems 7 is slightly smaller

Fig. 3. We show Cp{T)/T vs. InT for the concentrations a: = 0.4
and X = 0.5 of the N.F.L. window and for the CeCus.gAuo.i

archetype of N.F.L. behaviour.®' The data feature a widespread
pseudo-logarithmic regime which is well fitted by our equa
tion (1.3) with Tc = —Tx and a just slightly smaller than 3
(see Table I). For the clarity of the figure the different curves
have been shifted by a constant A = 0 for x = 0.4, A = 0.5 for

X = 0.5 and A = 1 for CeCus.gAuo.i.

than one and a is slightly smaller than three. Because
7 is close to one x(T') nearly follows a Curie Weiss law
X = C/{T+Tk) but instead of reaching aconstant CfTx
limit it features a mild power law divergence T~'~^ when
T cancels. Similarly Cp/T diverges like From
Eq. 2.2 furthermore we derive

c,(r)/r=^(i

Because 3 — a is so small, the exponential in the second
member can be expanded as l-|-(3 —a) InTx — (3 —a) InT
over a wide range of temperatures which explains the
pseudo-logarithmic regime observed when Cp{T)/T is
represented vs. InT as in Fig. 3 and is currently an
accepted signature of N.F.L. behaviour. For compari
son, we have also included the specific heat data of the

CeCus.gAuo.i archetype. In all cases our model per
mits a better account of the experimental evidence which
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avoids the difficulty that the extrapolation of the loga
rithmic trend would imply on the high temperature side.
In all cases the exponents although different from each
other pertain to the same narrow window close to but
smaller than 3. In all cases the entropy which in our

model is 5 = AT^"^/[(I — a)(2 — a)] is very close to
/?ln2.b2)

We have recently extended our analysis to these al
loys, on both sides of the N.F.L. window, which order
antiferromagnetically or feature spin density waves. We
found that our model also describes the susceptibility of

these systems at all temperatures larger than the Neel
temperature Tn (see Figs. 1 and 2). In all these systems
the exponent 7 which we measured resulted larger than
in the N.F.L. and actually larger than one: this implies
that the continuation of the paramagnetic susceptibility
would go through a maximum at Tmax and then cancel
like when T cancels in striking contrast with the
situation which we described in the N.F.L. systems (see
Fig. 2). In fact this solution becomes unstable at Tjv
(which turns out to be very close to Tmax) and below
Tn the susceptibility is described by a different law. The
discontinuity of the slope at Tn produces a distinct step
on the differential plot of Fig. 1.

Unlike in the case of a ferromagnet for example, Tn is
not announced by a "critical regime" where the suscep
tibility would scale like a power of T — Tn- till the last

moment Tx(T) remains a power of (1 + Tk/T) where
Tk is not obviously related to Tn and Tn itself appears
as a surprise when it occurs. In our model besides, with
a negative Tc, the coherence length ̂ (Tn) is finite if Tn
is finite. Is this the reason why 7(2;) varies along the
TN(a;) line in contrast with what we would expect for
a ferromagnet for example ? On the contrary ̂ (Tn) di
verges when Tn cancels and it seems that some universal
ity is correspondingly recovered: this could explain why
the exponents are close to each other for x = 0.4 and

X = 0.5 and close to the values measured in other sys
tems like CeCus.gAuo.i (for the time being we have no
obvious good explanation for the residual scatter which
is measured on these values).

§3. Conclusion

We fit the correlations at all temperatures for 0.4 <
X < 0.6 in the N.F.L. window of Ce(Rui_i;Rhj;)2Si2
and at all T > Tn on either side of this window. The
modeU'®) is an extension of the usual scaling approach

of critical phenomena where Tc and the different expo
nents are permitted to take unconventional values. For

Tc negative it produces the power law divergences which
we need to describe what is observed when T cancels.

However unlike many recent models which also present

this feature,''' it restitutes a regular behaviour (Curie
law) when T diverges. This is because, with our scal
ing variable J/Tc — J/T (eq. 1.1), the thermodynami-
cal quantities remain analytic at high temperature when
J/T cancels while the usual (linearized) scaling variable
T — Tc does not permit to restitute even the Curie law.
For the same reason, xT ̂.nd CpT^ rather than x ̂ ^d
Cp are the pertinent thermodynamical quantities to con
sider.^' Our exponents therefore, which are associated
with these quantities, differ by 2 and 1 respectively from
the corresponding "Griffith's" exponents.^' For x = 0.5
for example with the values given in Table I we have, in
any case, x T~°" and Cp oc T°^® (or ̂  oc T~°-^®).
The exponents measured depend on x when Tn(x) de
pends on X but seem to approach universal values in the
N.F.L. window where Tn cancels.

We believe that the scaling equations (1.1-1.5) fol
low in the framework of a hierarchical argument which
is more general than the classical "scaling approach to
phase transitions". The latter represents only the singu
lar side of the model.^'in the Tc < 0 case, the singularity
sits on the continuation of the expression on the unphys-
ical side of negative temperatures: this type of solution
is not prohibited by any thermodynamical rule and it is
obviously well adapted to the description of the present
situation where we have correlations but no long range
order

A cknowledgement s

J. Souletie has benefitted of an invitation from Japan
Society for Promotion of Science during which part of
this study was done. He also acknowledges many useful
discussions with S. Kambe and P. Haen.

1) J. Souletie, Y. Tabata, T. Tanigushi and Y. Miyako: Bur.
Phys. J. B 8 (1999) 43.

2) J. Souletie: J. Phys. France 49 (1988) 1211.
3) H.v. Lohneysen, T. Pietrus, G. Portisch, H.G. Schlager,

A. Schroder, M. Sieck and T. Trappmann: Phys. Rev. Lett.
72 (1994) 3262.

4) A.H. Castro Neto, G. Ceistilla and B.A. Jones: Phys. Rev.
Lett. 81 (1998) 3531.

5) J. Souletie: J. Mag. Mag. Mat. 54-57 (1986) 2Pfl.




