
Frontiers in Magnetism

J. Phys. Soc. Jpn. 69 (2000) Suppl. A. pp. 156-159

Nonlinear Responses in Magnetic Systems
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The present paper reviews some general characteristic properties of nonlinear responses and
discusses some interesting aspects of those in magnetic systems such as spin glasses, random
spin systems, Heisenberg magnets and kinetic Ising systems. In particular, nonlinear responses of
quantum systems are expressed in terms of higher-order quantum derivatives. The magnetization
of the Heisenberg model in the presence of a magnetic field is shown to be expressed in terms of
the transverse magnetic fluctuation in the presence of a magnetic field.
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§1. General Expressions of Nonlinear Re
sponses

It will be instructive to review general expressions of
equilibrium and nonequilibrium nonlinear responses.

i) Nonlinear responses in equilibrium systems
The average {Q) in an equilibrium system for a phys

ical quantity Q is given by

{Q)=TvQp, (I.I)

where the equilibrium density matrix p = exp[—/?(7f —
HQ)] with /? = \/k^T is expanded with respect to an
external field H conjugate to Q in the form^)

= E
-if)"

■ Q- Q,

where the quantum derivative d"e~ /d^Ti is de
fined^"®) using the following higher-order quantum
derivative d"f{A)/d"A :

l ■"'i
tnSn), (1.3)

Jo

where denotes the n-th derivative of f{x) and
the inner derivation Sj is defined by

6j : dA ■ dA ■ ■ dA = dA ■ dA ■ (SAdA)

Here, 6a is defined by SaQ = [^,<9] = AQ - QA. Us
ing the quantum derivative (1.3), we have the following
operator Taylor expansion formula:'^"®^

^ d"f{A)
n\ dA"'

These formulas will be used efficiently in discussing
nonlinear responses of magnetic systems.

ii) Nonlinear responses in nonequilibrium systems
The nonlinear response {Q)t in a nonequilibrium sys

tem described by the time-dependent Hamiltonian

n{t)=n- AF{t), (1.6)

is obtained through the density matrix p{t) satisfing the
von Neumann equation

(1.7)

In order to study the time-dependent nonlinear re
sponse for (1.6), it is convenient to introduce the so-
called "entropy operator" 'q{t) as p{t) = exp(—T](t)).
Then, r){t) is shown^) to satisfy the same equation as
(1.7), using the quantum analysis. This fact gives the
following perturbational expansion of 77(f), namely the
exponential perturbation scheme:^!

77(f) = $ -b /?7f -f 771(f) -b 772(f) -b b 77„(f) -b • ■ • (1.8)

with a normalization constant $ and

^nit) = - J e^'dsF{t + s)j dti dt2- -
• • • / <'fn-lT'(f-b fi) • ■ • i^(f-b fn-l)

Jo

X ^A{t,)ftA{t:,) ■ ■ ■ l5yl(7„_i)i(s), (1.9)
with the hyperoperator and with A = {ifi)~^6A'H.

As was pointed out in Ref.l, the first-order term 771(f)
gives Zubarev's theory in the above situation. The
scheme (1.8) is a renormalized expansion, because even
the "first-order" density matrix pi(f) = exp(-$ — —
771(f)) in the above sense contains partially terms up to
infinite order with respect to the external field H.

§2. Nonlinear Responses to Local Fields and
Random Local Fields in the Ising Model

In the present section, we explain nonlinear responses
of local fields in the Ising model as a preliminary example
of more general formulations in quantum systems.
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The simplest example is an expression of the local
magnetization at the site k, ruk = gfiB{Sk) as a function
of a local field Hj. It is easily shown that the average
{Sic) in the presence of Hj is given by

^  {Sk)o + {SkSj)o tanhhj
^  1 + (5j)o tanh/ij ' ^

where hj = PfMsHj and {Q)o and (Q) denote the canon
ical averages for the Hamiltonians Ho and Ho —
fi-QHjSj). Equation (2.1) holds even when Ho contains
magnetic fields at any lattice points. If k — j, we have

X  {Sj)o + tanh hj
- 1 + {Sj)oto.nhhj-

These expressions hold in the whole range of the lo
cal field Hj. We can derive many other expressions for
canonical averages of any spin operators, {Sj^ ■ ■ ■ Sj^).
These results will be extended later to quantum spin

systems.

When Hj is a random local field, we have

(iSk)).
_/M
\  1

0 -I- {SkSj)otanh{PiJ.BHj)
+ {Sj)oianh{/3nBHj)

If H does not contain any magnetic field, then we have

{Sj)o = {Sk)o = 0. Thus, we arrive at the results

{{Sk))Hj = {SkSj)o{ta.nh{f3fiBHj))Hj, (2.4)

({Sk)^)Hj = {SkSj)l{ta.nh^{l3^BHj))Hj,

{{Sk)^)j = {{SkSj)l)j teinh\ptiBHj) (2.6)

for a fixed value of Hj. Here (• • •)/ denotes the ran
dom average over the distribution of exchange interac
tions {Jij).
These results will be instructive in discussing the non

linear response in spin glasses.

§3. Nonlinear Responses in Quantum Spin Sys
tems

We can show, even in quantum spin systems, that

there are some cases in which nonlinear responses can
be exactly expressed in terms of a finite number of spin
correlations.

i) Nonlinear responses in spin systems with local con
stants of motion.

We consider the following Hamiltonian

« = - E E - TiSJ

for some fixed site i. Here {j k) denotes the nearest neigh
bour interactions. Clearly there exists a local constant
of motion, Hioc defined by

all

Hioc = - E JjkS^S'k - gtiBHiSl - TiSt = Hi -

for any value of spin. The remaining Hamiltonian H^
is given by Ht — H — H\oc and it is different from the
uniform Ising Hamiltonian Hu by Hi, namely Hr = H^ —
Hi- Note that [7fu,^«] = 0, because they are both of
Ising type. Thus, we have

(g) =TrQe-^'^/Tre-^^

=  (3.3)

for any spin operator Q. The average {Q)u denotes the
canonical average for the Hamiltonian Hu- It is easy to

confirm that both of the numerator and denominator of

(3.3) are expressed in terms of a finite number of spin
correlation functions.

There are many other such examples, say an alternat

ing transverse Ising model,

^ - E - mB ̂HkSl-Y^ TjSJ (3.4)
{jk) k jeA

for a bipartite lattice composed of A and B sublattices.
There are an infinite number of local constants of motion

in this Hamiltonian. Namely the following local Hamil
tonian

= - E - 9k^BHjS'j - TjSf (3.5)
k&B

commutes with H for any j of the A sublattice.
More detailed calculations will be reported elsewhere.

For some exact treatments of the uniform transverse

Ising chain, see ref. 7 and references cited therein.

ii) Nonlinear response in the Heisenberg model
We consider here the following Heisenberg model

N

n = Jij Si ■ Sj -g^LBHY, Sj (3.6)
j=i

with arbitrary spins {5j}. As is well known, the second
Zeeman term in (3.6) commutes with the first term in
(3.6). Using this symmetry and the identitiy®)

fp
{[A,B])^ I (e^^[7f,B]e-^^A)dA (3.7)

Jo

obtained directly or from the quantum derivative of e~^^
with respect to H, we obtain

N

{S]) = tanh(/?,.Bi/) + SyS]) (3.8)
»=i

for jf = 2 after straight-forward but lengthy calculations.
Namely the local moment in the presence of a magnetic
field is expressed in terms of the transverse correlation
functions in the presence of a magnetic field. Thus, the
total moment 5^ = ̂  Sj is expressed in the form®)

(S') = tanh(/3/iBi/)( (5^)2 + (5^')^). (3.9)

This indicates that the nonlinear response is expressed
by the quantum fluctuation in the presence of a magnetic
field. This holds in the whole range of the magnetic field.
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§4. Nonlinear Susceptibility in Spin Glasses

As is well known, the linear susceptibility Xo{T) does
not show any divergent singularity at the spin-glass tran
sition point. It was pointed out by the present author^
that the nonlinear susceptibility X2{T) defined in

m = xo{T)H ̂  X2{T)H^ + ■ ■ ■ (4.1)

for the magnetization m per site in a magnetic field H
is related to the spin-glass response Xsg as

X2{T) oc -XseiT). (4.2)

Here, Xsg{T) is defined in the expansion

q = {{S^)l}j=XsgiT)H' + - - - (4.3)

for the spin-glass order parameter q above the critical
point Tsg. Here, (• ■ •)j denotes the average over the dis
tribution of the random exchange interactions {Jij}. As
is seen from (2.6) or more rigorously from Appendix, the
spin-glass susceptibility Xsg{T) is expressed in terms of
the spin-glass correlation function as

Xsg{T) = {^myf2ii3!S^)l)j (4-4)
i=i

for T > Tsg. This diverges^°"^^^ at the transition point
Tsg. Therefore, the nonlinear susceptibility X2{T) shows
negative divergence.^") This prediction was confirmed ex
perimentally by Miyako et al.^^) Thus, the spin-glass
phase transition is characterized by the negative diver
gence of the nonlinear susceptibility.
More explicitely, the spin-glass order parameter q is

expressed as^^)

« = + («)

with t — {T — Tag)/Tsg and h — xo(Tsg)i///iB for the
SK model. The above scaling law explains well the di
vergence of Xsg(T) at Tsg, and consequently the negative
divergence of the nonlinear susceptibility is shown to ap
pear through the relation (4.2).

§5. Nonlinear Relaxation in the Kinetic Ising
Model

First we review the critical slowing down in the linear
response for the kinetic Ising model. For example, the
relaxation time t of the magnetization m of the kinetic
Ising model shows the following anomaly

\T-T^\^

near the critical point.
According to the van Hove theory, r is proportional

to the susceptibility XoiT) and consequently we have
A = 7 for the susceptibility exponent 7. However, in
1969 Yahata and the present author^®) found that A is
different from 7, namely that there exists an intrinsic
dynamical critical exponent, at least in the kinetic Ising
model. Many papers^®) have been published to confirm
this statement.

According to the renormalization group theory, we
have

A — 7 -^.^Iog(|)+-
in d dimensions, for e = 4 — d. This shows that A > 7,
at least near d = 4 (d < 4).

In order to study the linear and nonlinear relaxation
in a unified way, the present author^®) defined the relax
ation T by

r  dt, (5.3)
Jo m(0) - m(oo)

for example, for the magnetization m{t) as a function
of time t. Then, the linear exponent r^') and nonlinear
exponent r^"') satisfy the relation^®)

aC) - a("') = 13. (5.4)

The present author^") proposed the following "dy
namic finite-size scaling":

m(t) = , e^t ,L~'t) (5-5)

for a magnetic field h and size L. Here, ip = /S/A — Pji/z.
This dynamic finite-size scaling law has been found re
cently to be very usefuF®) in evaluating even equilibrium
critical exponents [3 u and 6.

§6. Summary and Discussion

In the present paper, we have reviewed a general ex
pression of nonlinear responses in terms of quantum
derivatives and also nonlinear responses in nonequilib-
rium systems. Nonlinear responses to local fields and

random local fields in the Ising model have been for
mulated. Nonlinear responses in quantum spin systems
are also discussed using the symmetry property of the
relevant system, namely the existence of a constant of

motion. The negative divergence of the nonlinear sus
ceptibility of spin glasses has been discussed from our
viewpoint of nonlinear responses in magnetic systems.
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Appendix

The average (5|) is expressed as

N

{Sl)H = J2(SkS])oPHBH (AT)
i=i

in the linear regime of a uniform external field H. Then
we have

{l3^BHfY.{{SlS/)l)j. (A-2)
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Thus, we arrive at (4.4).
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