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Ground State Structure of Spin Glasses
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We investigate the ground state structure of Ising spin glasses in zero magnetic field by deter
mining how the ground state changes in a fixed finite block fax from the boundaries when the
boundary conditions are changed. We find, both in two and three dimensions, that the proba
bility of a change in the block ground state configuration tends to zero as the system size tends
to infinity. This indicates a trivial ground state structure, as predicted by the droplet theory.
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§1. Introduction

In this talk we discuss some recent work that tries to

shed light on the nature of the spin glass state. It is now
fairly clear that there is a finite temperature spin glass
transition in three dimensions'"®^ (3-d) though a transi
tion only occurs®'^) at T = 0 in 2-d. However, the nature
of the spin glass phase below the transition temperature
Tc is not clear. We will review the two principal scenarios
that have been proposed for the spin glass phase, which
differ in how many "states" contribute to the correlation

functions, and will mention briefly existing numerical re
sults which probe this region. Then we describe a new
approach®'®) to investigate the problem which involves
looking at how sensitive the region far from the bound
aries is to changes in the boundary conditions. The idea
can be applied both to ground states and to finite tem
perature studies, but initially we have just considered
T = 0.

§2. Scenarios for the spin glass phase

Controversy remains over the nature of ordering in
spin glasses below the transition temperature, Tc, and
two scenarios have been extensively discussed.

In the first approach, one assumes that the basic

structure of the replica symmetry breaking (RSB) in
Parisi's'®"'®) solution of the infinite range model applies
also to realistic short range systems. In this picture, the
order parameter is not just a single number, as is the case
for a ferromagnet for example, but is a probability dis
tribution, P{q). This distribution gives the probability
that two spin configurations, weighted by the Boltzmann
factor, have overlap given by q. To be precise P{q) is de
fined by

P{q) = {Hq-qi2), (2.1)

where (• • •) denotes both a thermal average and an aver
age over disorder, and

1  ̂
n  - _ VAT 2^ ' ' '

where (1) and (2) denote two copies of the system with

the same interactions.

In the Parisi picture P{q) is a non-trivial function be
cause many thermodynamic states contribute to the par
tition function, i.e. they have differences in total (free)
energy which are of order unity and yet have very dif
ferent spin configurations from each other. As a result,

P{q) has a delta function at qsA coming from ordering
in a single state, and a tail down to g = 0 from over
lap between different states, which does not vanish for
L —^ oo.

In the alternative approach, the "droplet model", pro

posed by Fisher and Huse'°) (see also Refs.""'^)), one
starts by defining the concept of "thermodynamic states"
and "pure states". For a given set of boundary condi
tions, one looks at the correlation functions of the spins
in the bulk, i.e. in a finite region far from the bound
ary. Each different set of correlation functions defines a
separate thermodynamic state.
However, many thermodynamic states defined in this

way are related to each other. To see this, consider,

for example, a ferromagnet below Tc- Clearly two of
the thermodynamic states are | t) and | f.) , where the
spins are aligned up and down respectively. These can

be generated by fixing the spins on the boundary to be
up (or down). However, if we use periodic boundary con
ditions, then the system is in a linear combination of | t)
and I ),) with equal weight (assuming no external field,
which will be case for all the discussions in this paper).
States like | t) and | j-) , which are "extremal", in the
sense that other states can be expressed as linear com

binations of them, are called pure states. An important
question is the number of these pure states. For the fer
romagnet, there are just two. In such a situation, where
there is just one pure state (plus other(s) related by a
global symmetry of the Hamiltonian), we say that the
pure state structure is trivial. If this occurs at T = 0 we
refer to a "trivial ground state structure".
One other issue relating to the ferromagnet needs to

be addressed before we go on to spin glasses. It is pos
sible that the boundary conditions generate a "domain"

state which is | t) in some region of space and | ),) in the
rest. If the domain wall intersects the region where we
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are computing the correlation functions, we would have
another pure state, since it is not a linear combination of
11) and I 4.) (more precisely it is one linear combination
in part of the region and a different linear combination
in the rest). Since these domain states are closely related
to the pure states | t) a^nd | J.) we will still denote the
pure state structure as trivial. In order to eliminate do
main states, which do not really alter the nature of the
ground state structure, but still enable us to detect other
possible states, we look at correlation functions in a fixed
finite box, far from the boundaries, as the (linear) system
size L tends to infinity. The probability that the domain
wall intersects the block vanishes as L 00, and so the

ground state structure is trivial if we get the same state
in the box (or the reversed state) with probability one
for L —00 when the boundary conditions are changed.

Returning now to spin glasses. Fisher and Huse^°^ find,
under certain assumptions, that the pure state structure

in spin glasses is trivial. More precisely, they argue that
the elementary excitations are compact objects called
"droplets" such that the minimum energy of a droplet
of linear extent L which encloses a given site is ~ L®,
where 0 is a "stiffness" exponent. For the spin glass
state to be stable at finite temperature one must have
0 > 0. Since it costs a lot of energy to turn over a
large number of spins, the state far from the boundary
will not change upon changing the boundary conditions,
as in a ferromagnet where in that case 0 = d — 1. As
an additional consequence, P{q) is also trivial, i.e. is a
pair of delta functions at q = ±qBA where qsA is the
Edwards-Anderson order parameter describing order in

the (single) pure state. For a finite system, there will be
a weight in the tail but this vanishes in the thermody-
namic limit as 1/L®.

It should be pointed out that although the volume

of a droplet is assumed to be compact, i.e. V ~ L'',
the surface of the droplets will be a fractal of fractal
dimension, df where d — 1 < df < d. Furthermore, in the
droplet picture, the spin glass state is much richer than
the ferromagnet, even though the pure state structure
is trivial, because the relative spin orientations at large
distances change when the temperature is changed by
even a small amount. This is sometimes called "chaos".

Fisher and Huse have also argued that P{q) is not
necessarily a good indicator of the number of pure states.
For example an antiferromagnet with an odd lattice size
L must have a domain wall built in. This domain wall

will fluctuate in position and so give a non-trivial P{q),
although the pure state structure is trivial. An opposite
example, where P{q) is trivial but there is more than one
pure state is the random field Ising model. The two pure
states are | t) a^nd | 4-) , but these are no longer related
by symmetry and have a (free) energy difference of order

Because this difference diverges for L —> 00 one
state will dominate the statistical sum so P{q) will just
be a single delta function.

§3. Earlier Numerical Work

First of all we discuss earlier numerical work at zero

temperature. In two dimensions, it is clear®T) that 6 is
about —0.28, the negative value indicating that spin glass

order does not persist to finite temperature because large
domains, which cost very little energy, will be excited
at arbitrarily low temperatures. In three dimensions,
6 is abouf*'^' 0.20, which is positive, implying a finite
Tc which has also been found directly. However, it is
also small which means that it is hard to distinguish the
droplet theory from the RSB picture from simulations
of P{q). In four dimensions, recent work^^^ has found a
fairly large positive value of 6 of around 0.7. Hence 4-d
should be the easiest case in which to distinguish droplet
from RSB predictions for P{q).
At finite temperature, Monte Carlo simulations on

short range models on small lattices in three and four di
mensions,^®' find a non-trivial P{q) with a weight
at q = 0 which is independent of system size (for the
range of sizes studied), as predicted by the Parisi theory.
Some of the 4-d results show a P{q) which is size inde
pendent up to around L = 8 at about 2/3 Tc, which is
surprising if the droplet theory is correct. Perhaps the
droplet theory is correct but there is some length scale,
greater than a lattice spacing, below which the RSB pic
ture works better. This length could, perhaps, be the
critical correlation length, but naively, it should be quite
small at 2/3 Tc since the correlation length exponent v
is less than one.®^)

§4. New Approach

Most numerical work up to now has concentrated on

P{q) but here,®'®^ by contrast, we focus directly on the
the pure state structure. It is interesting to investigate
this even at T = 0, where there are efficient algorithms
for determining ground states, even though P{q) is trivial
in this limit (for a continuous bond distribution).
We look at how the spin correlations in a central block

of fixed size Nb = L'g, change when the boundary con
ditions change. Remember, if the probability of a change
tends to zero for T ̂  00, then the ground state structure
is trivial. Here we just consider T = 0 and consider a

central block of size Lb = 2. Note that there is no need

for the block size to tend to infinity. This would be very
inconvenient to implement since we need Lb L and
yet the largest size L that can be studied is not extremely
large..

According to the droplet theory, the change in bound
ary conditions will induce a domain wall of size L plus
possibly some smaller domains near the boundary. The
configuration of the central block will change if the the
surface of the droplet of size L passes through the block.
The probability that this happens is proportional to

where df is the fractal dimension of the surface of the
droplet (i.e. the domain wall). Hence this probability
tends to zero for L —> 00, at least as long as d/ < d.

According to the RSB picture, changing the bound
ary conditions will shuffle the order of the low energy
states (in general we expect by an amount proportional
to Anti-periodic boundary conditions, see be
low, will have a smaller effect. Since there are assumed

to be states which differ in energy by a finite amount,
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and which have very different spin configurations (since
the overlap is less than unity), the new ground state will
be quite different from the old one. Hence the proba
bility that the spin configuration in the block changes is
non-zero for L —> oo.

§5. The Model

The Hamiltonian is given by

(ij)

where the sites i lie on a simple cubic {d = 3) or square
lattice {d = 2) with N = L'^ sites {L < 10 in 3d, L < 30
in 2d) , Si = ±1, and the Jjj are nearest-neighbor inter
actions chosen according to a Gaussian distribution with
zero mean and standard deviation unity. We determine
the energy and spin configuration of the ground state for
a given set of bonds, initially for periodic boundary con
ditions denoted by "P". Next we impose anti-periodic
conditions ("AP") along one direction, which is equiva
lent to keeping periodic boundary conditions and chang
ing the sign of the interactions along this boundary, and
recompute the ground state. Then we change the sign
of half the bonds at random along this boundary, which
we denote by "R". Finally we replace the bonds on all
the surfaces by a new set of random variables (so the
magnitude as well as the sign is changed). We denote
this by "R3".

In 2-d we used sizes up to L = 30 while for 3-d the
largest size was L = 10. To determine the ground state

in two dimensions we used the Cologne spin glass ground
state server^^' which computes exact ground states using
a branch-and-cut algorithm. In three dimensions we used
a heuristic "genetic" algorithm discussed by Pal,^®'^®^
see also Refs.®'^°^ We did some checks®^ to verify that
errors due to the genetic algorithm sometimes not giving
the exact ground state are negligible.

In order to study the dependence of the spin con
figurations in the central block on boundary conditions
we compute the block spin overlap distribution

where a and /3 denote two boundary conditions, and

Papil) = il-Qais)),

in which

,  Nb

=  (5.3)
1=1

is the overlap between the block configurations with a
and /3 boundary conditions, is the value of Si in the
ground state with the a boundary condition, and the
brackets (• • •) refer to an average over the disorder.

Since we work at T = 0, each sample and pair a,/3
gives a single value for q. The self overlap distribution,

Paa{l)j has weight only at q = ±1, since the ground
state is unique for a given boundary condition. (q) is
normalized to unity i.e. f P^(q) dq — 1, it is symmetric,
and the allowed g-values are discrete with a separation

of of Aq = 2/N^, so P^^{±1) = N^/4.
If the configuration in the block changes when the

boundary conditions are changed from a to /3, then

slope 1^
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Fig. 1. Defect energies in 3-ci.
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Fig. 2. Block overlaps in 3-<l. The probability that the block
configuration is unchanged is the weight in the bins at g = ±1.

the block overlap, will no longer be ±1. Hence
1 — P)^(l)/P)fa(l) is the probability that the block
ground state changes on changing the boundary condi
tions. We will see that this quantity vanishes as T —> oo.

§6. Results

Fig. 1 shows results for the defect energies in 3-d for
P-AP and P-R3 boundary conditions. For P-AP, the
boundary condition change can be removed locally by
a gauge transformation®'®^ and one is left with a single
domain wall, in general far from the boundary, of size L.
For P-AP boundary conditions we estimate that the data
point for L = 10 is about 5% too high because the genetic
algorithm does not always find the exact ground state.
Correcting for this, we get 0 = O.21±O.O2in agreement
with other estimates.^' For the P-R3 boundary condi
tions, the change cannot be removed locally by a gauge
transformation and small droplets, in the vicinity of the
boundary, will also be induced, giving an energy change
of order ~ L which agrees with the numerics.

Fig. 2 shows block spin overlaps in 3-d for P-AP and
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slope = -0.32

o P-R3
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Fig. 3. Probability that the block configuration changes in 3-d
for a range of sizes on a log-log plot.

P-R3 boundary conditions for two different sizes. One
clearly sees that the peaks at g = ±1 (whose weight gives
the probability that the configuration did not change)
increase significantly for larger L. The probability that
the block configuration changes when the boundary con
ditions are changed is shown in Fig. 3 for 3-d for P-AP
and P-R3 changes. The data for P-R boundary condi
tions is similar but shows some corrections for smaller

sizes.®) The data in Fig. 3 fit straight lines with the
same slope for the whole range of sizes. Fitting to the
form a+ bL~^, the chi-squared is higher for any positive
a than for a = 0. However, we cannot definitely rule out

that the data might extrapolate to a small positive value
for L -> GO.

In 3-d data for hoth sets of boundary conditions is

consistent with the probability of a change in the block
configuration tending to zero as with X ~ d — df =
0.32 ± 0.02. These results imply that the ground state
structure is trivial in Ising spin glasses in three (and also
in two) dimensions. We believe that our value for d/ is
the first reliable prediction for this quantity in 3-d. The
data for 2-d shows®'®) good power law behavior according
to Eq. (4.1) with d-d/ = 0.69±0.02, in good agreement
with Middleton®®) and earlier estimates of d/.®'®®'®^)

§7. Conclusions

To conclude we have seen that the ground state struc
ture appears to be trivial in a spin glass model with a
finite Tc, the three-dimensional Ising spin glass. It re
mains to understand why Monte Carlo simulations at
finite temperature find, by contrast, evidence for a non-
trivial pure state structure. It seems likely either that
the droplet theory is correct and a trivial P{q) is only
seen for larger sizes at finite-T, or, possibly, that there
are other low energy excitations which are not seen by
changing the boundary conditions and which could give
a non-trivial P{q) in the thermodynamic limit.
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