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The non-equilibrium relaxation method is an efficient numerical technique to analyze phase
transition and critical phenomena. Recent development and its applications are reviewed. Re
laxations of fluctuations provide various kinds of critical exponents accurately. It is applied
to estimate prisice values of /3, 7, u and z for the three-dimensional ferromagnetic (FM) Ising
model. The non-universal behavior of the FM transition in the ±J Ising model is discussed.
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§1. Introduction

The analysis of non-equilibrium relaxation process is
shown to be useful to investigate the phase diagram
and the critical phenomena.^"^^^ It is called the non-
equilibrium relaxation (NER) method. It was firstly
applied to estimate the critical point and the dynamic
critical exponent quite accurately for the ferromagnetic
(FM) transitions. The relaxation process is simulated
from the all-up state and the total magnetization m{t)
is measured. The statistical average is taken from inde
pendent Monte Carlo runs. Since simulation steps for
equilibration are not necessary in non-equilibrium pro
cess, one can treat large systems in which the equilibrium
simulation is difficult to perform.
The NER method now becomes one standard strategy

to study the phase transition and critical phenomena. It

is applied to study on the dynamical universality (weak
universality),^^ spin-glass problems,®"®^ XY models^®'
and quantum transitions.^^' Recently, the method is
extended to estimate various exponents using quantities
of fluctuations ( the susceptibility, the specific heat and
so on).^''' The critical exponents can be determined by
asymptotic powers of such quantities or their combina
tions. The estimation is simple and quite accurate, and
can be applied to wide variety of critical phenomena.

In this article, we review the recent progress on the
NER method, especially focus on the NER analysis of
fluctuations. The organization of this paper is as fol
lows. In the next section, the basic idea of the NER

method is described for the FM case. In section 3, the
analysis of fluctuations is introduced, and the NER anal
ysis of fluctuations is applied to the FM Ising model in
three dimensions to check the efficiency and accuracy.
In section 4, the universality of the FM transition in the

±J Ising model in three dimensions is studied. The non-
universal behavior of the FM critical phenomena in this
random system is discussed. The last section is devoted

to some remarks.

§2. Non-Equilibrium Relaxation Method

The NER analysis is simple and efficient for conven
tional critical phenomena. In the FM case, one may sim
ulate the relaxation process from the all-up state, and
measure the magnetization m{t) at time t. The relax
ation of m{t) shows a power-law decay

asymptotically only at the critical point, while it decays
exponentially in time to zero in the paramagnetic (PM)
phase, and to a positive spontaneous-magnetization
value in the FM phase. One of two ordering states has
been selected by choosing one of the completely ordered
states as the initial non-equilibrium state. The phase
simulated is distinguished by examining this asymptotic
behavior of m{t).

If one assumes the dynamic scaling form,^'^'^®^

m(t, e, L) = L-'t), (2.2)

for the non-equilibrium process, where L is the linear size
of the system and e = |r - Td/Tc the asymptotic power
is related to conventional static and dynamic critical ex
ponents as

Am = —. (2.3)
zi/

To distinguish the phase precisely from the data cal
culated, it is convenient practically to define the local
exponent Xm{t) of the relaxation function by the loga
rithmic derivative of m{t), i.e.

dlogm(t)

dlogt ■

It approaches to Am asymptotically {t 00) at the crit
ical temperature Tc, while it approaches to 0 and 00 in
FM and PM phases, respectively. The finite-time cor
rection for Am(i) is the same order as the correction in
m{t), for example, if one assumes

m{t) = + o{l/t)) (2.5)
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at the critical temperature,

X{t) = A + oil/t) (2.6)

is satisfied. At the critical point, the correction term
o{l/t) would be the order of l/t""* {wm > 0). There
fore, one can determine the critical point as the point
where Xmit) changes its behavior in 1/t = 0 limit. The
error bar is estimated directly by asymptotic behaviors
indicating out of criticality; the upper bound of Tc is
the lowest temperature indicating Xm{t) —t oo, and the
lower bound of Tc is the highest temperature indicating

Am(i) 0. Such an estimation of error bar will be much
reliable as compared with those obtained by conventional
scaling-plot analyses.
In Fig. 1, a typical plot of the local exponent is shown

for the pure FM Ising model in three dimensions. Sim
ulations are performed on the simple-cubics lattice with
sizes up to 127 x 127 x 128. In the following, inverse
temperature K = pJ is often used. At each tempera
ture, we choose several hundreds to thousands indepen
dent Monte Carlo runs for averaging. Further, m{t) is
averaged over all sites for each time step. It is clearly
observed in this figure that the curves for K < 0.221658
turn up when 1/t goes to zero — indicating the PM
phase in this region — and the curves for K > 0.221661
turn down — indicating the FM phase. This means that
the critical point exists in 0.221658 < K < 0.221661.
Consequently, the transition temperature is estimated as

Kc = 0.2216595(15) or Tc = 4.511424(30). The extrapo
lated value of Xm{t) is estimated as Am = 0.248(1).

Cubic Lattice Ferro Ising
1  I 1 1—
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58 +

0.25 -0*^O

o
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from the criticality where ̂ eq(T) < L holds, ̂ {t) < L is
always satisfied and the non-equilibrium process is recog
nized as that in the thermodynamic limit. In the critical
region where ̂ eq(T') > L, the characteristic time defined
by ̂ (ti) ~ L exists. The finite-size effect is observed in
t > tl- The analysis of non-equilibrium relaxation men

tioned above should be made only up to the time much
smaller than this ti. Since simulation steps for equili
bration are not necessary, one can treat large systems for

which the equilibrium simulation is unreachable. In such
systems, tl is large enough to analyze the asymptotic be

havior in the thermodynamic limit sufficiently from the
non-equilibrium relaxation in f < t/,.

§3. Relaxation of Fluctuations

It is confirmed that, in the non-equilibrium relaxation

from the all-up state, not only the magnetization but
also quantities of fluctuations defined by

X{t)/N = {m(tf) - (3.1)

m'{t)IN = (m(t)e(t)) - {m{t)){e{t)), (3.2)

Cit)/N = {em-{e{t))\ (3.3)

show a power-law behavior at the critical point,

where e{t) is the per-site energy and N is the number
of sites. Note that (m(t)) in the PM phase is non-zero
in general because the initial state may have a non-zero
value. The magnetization m{t) decays in time, while
fluctuations x(^)i /u'(t) and C{t) diverge. This means
they have positive powers. The above fluctuations ap
proach to equilibrium quantities asymptotically; they
are proportional to the susceptibility, the temperature

derivative of the spontaneous magnetization and the

specific heat, respectively
Assuming the dynamic finite-size scaling hypothe-

sis,^^'^®' the free-energy-like generating function / has
scaling form

- f-d/^

in the scaling region, where h denotes the symmetry
breaking field which is conjugate to the order parame
ter. The exponents j/j and yh are l/v and d — P/u, re
spectively, and d denotes the spatial dimensionality. The
NER exponents of fluctuations are given by derivation of
this scaling form and they are

Xit) ~ (3.5)

m'it) ~ (3.61

Fig. 1. Typical plot of the local exponent as a function of 1/t
for the pure FM Ising model in three dimensions. The corre
sponding inverse temperatures K are indicated in the figure. For
K > 0.221661, bending down behavior appears for 1/t —l 0 indi
cating the FM ordering. For K < 0.221658 bending up behavior
appears indicating the PM phase.

In general, the correlation length (,{t) is growing in
the non-equilibrium process from zero at the initial state
up to the equilibrium value ^eq(T'). In the region far

It is convenient to use the following functions of NER
fluctuations:

.(f) = N

fee{t)=N

(m(f))2

(m(f)e(f))

(m(f))(e(f))

{em /
(e(f))2 _
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which are introduced and used also in Ref. (14-15).
Asymptotic growth exponents at the critical points of
these NER functions are denoted by Xmrm Xme and Xee,
respectively, and they are

3D Ising Metropolis, K=0.221660

Xmm = (3.11)
z

Xme = —, (3-12)
zv

Aee = —. (3.13)
ZV

Similarly to the magnetization, we denote the local ex
ponents of these functions as Xmm (t), Xme (t) and Age (t).
The conventional critical exponents are obtained asymp
totically by combinations of these local exponents:

(3.14)

(3.15)

(3.16)

z(t) = (3.17)

So the study on the relaxation of fluctuations at the criti
cal point provides the estimates for various exponents.^®'
We apply the above method to the FM Ising model in

three dimensions, and check the validity, the efficiency
and the accuracy of it. Calculations are performed on the
simple-cubics lattice at the critical temperature obtained
by the previous section with sizes up to 127 x 127 x 128.
At each temperature, we choose about 10® independent
Monte Carlo runs for averaging. The results are shown
in Figs. 2-5. Those for two different sizes are plotted. It
is seen that the size dependency is almost negligible in
the present accuracy. If one assumes that the asymptotic
form of local exponents is analytic to 1/t, the critical ex
ponents are obtained by simple extrapolations. It is ob
tained that z = 2.06(1), V — 0.630(5) and /3 = 0.320(3).
Note that the data of a does not converge enough to the
the expected value (~ 0.11) in the present observation
time. This would be due to the smalhiess of the exponent
providing the slow convergence in time.^®' Although the
problem of the asymptotic form remains unsolved, our
present estimations are consistent with those obtained
so far.

§4. Application to the FM Transition in the ± J
Ising Model

The model we study is the ±J Ising model on the
simple-cubic lattice:

n = - JijSiSj, (4.1)
<i,j>

where the summation runs over all nearest neighbor sites
on the simple-cubic lattices. The quenched coupling con
stant takes J(> 0) with probability p, or — J with prob
ability (1 ~ p).
The behavior of this model along so-called the

101x101x100 <>
127x127x128 +

0.02 0.04 0.06 0.08 0.1
1/t

Fig. 2. Local exponent of the dynamic critical exponent as a func
tion of 1/t for the 3D pure FM Ising model.

3D Ising Metropolis, K=0.221660
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1/t

Fig. 3. Local exponent of i/ as a function of 1/t for the 3D pure
FM Ising model.

Nishimori-Iine,^®'

2K = log

is well-studied. The multi-critical point (MCP) where
the PM, the FM and the spin glass (SG) phases merge is
considered to be located on this line. The specific heat
does not diverge on this line, providing a < 0. It was sug
gested by Monte Carlo renormalization study^®) that the
static exponents along the boundary of FM transition are
not much different from those of the pure system - uni

versality - except the MCP, and so do the ratio of them
{P/v, j/v) - weak universality - including the MCP. The
series expansion study^^' concluded that v = 0.85(8) and
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3D Ising Metropolis, K=0.221660
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Fig. 4. Local exponent of /3 as a function of 1/t for the 3D pure Fig. 6. FM transition points for the 3D ±J Ising model is plotted
FM Ising model. in the p — T plane. The solid curve shows the Nishimori-line.®'
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Fig. 5. Local exponent of Q as a function of 1/t for the 3D pure
FM Ising model.

Fig. 7. The values of non-equilibrium exponent for the 3D ±J
Ising model are plotted as a function of the transition tempera
ture.®'

7 = 1.80(15) at the MCP belong to a different universal
ity class from that at the pure FM case {v — 0.630 and
7 = 1.24). Recently, Hukushima^^' investigated the phe-
nomenological Monte Carlo renormalization group based
on numerically calculated domain-wall free energies in
the p — T plane. His result suggests the existence of so-
called the random fixed point around p = 0.9 (it is not
sure to be located just on the p — T plane). This means
that a single universality class would hold along the FM
phase boundary in pmc < P < 1, and at least three uni
versality classes exist for FM transitions; the pure case,
the random fixed point and the MCP.
The NER method is applied also to the SO model.®"®'

The MCP is located finely with the estimations of the

non-equilibrium and equilibrium relaxation exponent us
ing the aging relation^®' which connects the non-
equilibrium relaxation to the equilibrium relaxation on
the Nishimori-line. These studies show that the NER is

useful to analyze the FM transition even in disordered
systems in which randomness and frustration make it dif
ficult to analyze thermodynamic behaviors. The MCP
was estimated as p^c = 0.7673(3) for the simple-cubic
lattice.^' The FM phase boundary and corresponding
dynamic critical exponent Am = pjzv were obtained as
in Figs. 6 and 7.®' It was confirmed that ̂ jzv is non-
universal and varies from the pure case to the MCP.
What is the origin of this non-universal behavior? If
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it is due to the dynamical effect, only the exponent ̂  is
non-universal which is not contradict with the existence

of the random fixed point.
In the following, we estimate 2, v and /3 using the

NER of fluctuations to discuss the origin of non-universal
behavior of ji/zv. Calculations are carried out for several
points on the phase boundary appeared in Fig. 6 with
the size of 101 x 101 x 102. At each point, we choose
5 X 10^ to 1.5 X 10® independent Monte Carlo runs for
averaging. The local exponents defined by eqs. (3.15)-
(3.17) are plotted in Figs. 8-10. It is seen that, for each
exponent, the extrapolated value to 1/t 0 varies with
p in the present accuracy. This means the non-universal
behavior for z, /3 and u. The estimated exponents at the
MCP, v = 0.85(5) and 0.40(3), are consistent with those
obtained by the series expansion, if we use the hyper-
scaling relation, 2/3-1-7 = i® ̂ 1®° consistent with the
non-divergence of the specific heat, since a = 2 — du =
—0.55(15). We also plot the combination 0{t)/i'{t) in
Fig. 11. As compared with other plots, the extrapolated
value seems to be universal for pmc < P < 1, and that
for the MCP is different from that. This means the weak

universality holds for pmc < P < 1, and the MCP belongs
to a different class.

3D Ising SG Metropolis
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Fig. 9. Local exponent i/(t) defined by eq. (3.16).
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Fig. 10. Local exponent /3(t) defined by eq. (3.15).

Fig. 8. Local exponent z{t) defined by eq. (3.17) at p =
1.0,0.9,0.8 and pmc for the 3D ±J Ising model. The extrap
olated value for 1/t —t 0 is the critical exponent.

§5. Renicirks

The applications of the non-equilibrium relaxation
(NER) to the phase transition and critical phenomena
are reviewed. The phase and the critical point are effi
ciently studied by observing the NER function of the
order-parameter, and critical exponents are estimated
from the NER functions of fluctuations.^®^ First, it is
applied to the pure FM Ising model in three dimensions,
and confirmed the accuracy.

Next, it is applied to the ± J Ising model in three di
mensions to investigate the universality of FM critical

phenomena. It is confirmed that the estimated critical
exponents at the multi-critical point (MCP) are consis
tent with results by the gauge theory^®' and the series
expansion.®^' The universality does not hold along the
FM phase boundary, while the weak universality holds
except at the MCP. The origin of non-universal behavior
for Xm — comes from the dynamic critical expo
nent 2. These result is partly consistent with that of
the Monte Carlo renormalization study®"' for the case
of the weak universality. It is not observed three differ
ent classes provided by the random fixed point suggested
by the phenomenological Monte Carlo renormalization
study.®®'

It is noted that the asymptotic form of local expo
nents is not apparent, while we assume the analyticity of
them to 1/t, and estimate the critical exponents by sim-
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3D Ising SG Metropolis
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Fig. 11. Local exponent Fig. 12. The local exponent of m{t) at p = 0.765 and K = 0.9
for the 3D ±J Ising model. The FM ordering is indicated.

pie extrapolations to 1/t —l 0. If this is not true, values
of the extrapolation would vary as time steps increases.
Further investigation is necessary to clarify it.

In the simulation, single-spin flip dynamics with two-
sublattice update are used. An independent-spin cod
ing technique^®' and shuffling technique^^' are applied
with Lewis-Payne-type pseudo-random number.^®'
The simulations are performed on Fujitsu VPP500/40,
each of whose 40 processors has 1.6GFL0PS peak per
formance, and the typical performance for simple-cubic
lattice is 773 MUPS(million updates per second) per pro
cessor only for spin update, and it becomes 556 MUPS
per processor for spin update and magnetization calcu
lation at every step.

We finally comment on the shape of the phase bound
ary below the MCP. It is concluded exactly by the gauge
theory^®) that the long-range FM ordering does not ap
pear in p < pmc at any temperature. This means that
the boundary is vertical or reentrant. However, in our
preliminary calculation with p = 0.765 < Pmc = 0.767
and /f = 0.9 > K^c — 0.596, the bending down behav
ior is observed (see Fig. 12). This indicates the FM phase
there, which contradicts with the exact result. Two pos
sibilities are considered. One is that the boundary of
the FM long-range order is deviated from that of the
FM spontaneous symmetry breaking. The NER analy
sis from the all-up state detects the latter case and the
gauge theory restricts the former point. The other is the
first order phase transition below the MCP, in which the
NER analysis from the all-up state overestimates the FM
phase; the observation is due to the hysteresis. The same
phenomenon is observed in the XY gauge glass model in
three dimensions. Further investigation is necessary to
conclude it.
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