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We investigate the spectrum of elementary excitations for 5=1 Heisenberg chains with single
ion anisotropy in an external magnetic field and their signatures in ESR transition rates. We
find that the order of levels as found previously for wavevector g = n (Haldane gap) changes
drastically a.t q ^ n, leading to an accidental degeneracy at g « O.TSrr. We calculate the
dependence on magnetic field of ESR transition rates for transitions inside the group of lowest
excited states (one magnon states) as well as for ground state transitions to some low-energy two
magnon states. Characteristic variations of intensity allow to identify the participating levels.
Numerical calculations for 5=1 chains up to 14 spins confirm the approximations used in
obtaining the analytical results.

§1. Introduction

In the last decade a lot of interest has been devoted

to one-dimensional (ID) spin systems with isotropic ex
change interactions and a correlation induced gap in
the excitation spectrum. The prototype of these sys
tems is the 5 = 1 antiferromagnetic Heisenberg- (Hal
dane) chain. The basic structure of the ground state
of this system was identified as valence bond state (VBS
state) with the help of a simple model including also bi
quadratic exchange interactions, for which the ground
state is exactly known. The excitation spectrum con
sists of magnons with an energy gap A at wavevector
q = TT. A more realistic hamiltonian for systems of ex
perimental interest which includes single-ion anisotropies
and an external magnetic field is (in the following we take
the value of the antiferromagnetic exchange coupling as
energy unit and measure magnetic fields in units oigfiB)

Li

71=1

+ E{{s^f-{syr) - ,

This 5=1 chain has been the subject of a num
ber of investigations in recent years: For D = E = 0
the gap closes for a critical magnetic field Be = Aq,
where Aq is the zero field gap, and the system under
goes a transition to a new phase which has the charac

teristics of a Luttinger liquid: gapless spectrum, power
law correlations. Without external field and for F = 0

the system is in the Haldane phase for D < Dc and in
the large—D phase for D > Dc, where Dc ~ 1.'^' The
combined effect of anisotropies and external magnetic
fields on the energy gap has been investigated by Go-
linelli et al.^' Systems described by the hamiltonian of
eq.(l) such as NENP and NINO were investigated al
ready some years ago® and understood after invoking
the existence of an internal staggered magnetic field. Re
cently, new anisotropic 5=1 systems, which do not show

this internal staggered filed were investigated by ESR ex
periments: Honda et aP®' have performed measurements
on the material NDMAP, an 5 = 1 Heisenberg chain in
the Haldane phase (subcritical single ion anisotropies),
which by a sufficiently strong magnetic field may be
driven into the high field phase, and Orendac et al have
investigated the material NENC,^^^ an 5 = 1 Heisenberg
chain in the large D—phase. We have reconsidered the
dynamics of 5 = 1 chains governed by the hamiltonian of
eq.(l) (with D > 0,E > 0) with the aim to contribute to
the interpretation of the ESR spectra in these materials.
In the following we report the first part of this investiga
tion which refers to the dynamics in the Haldane phase.
In §2 we extend the work of ref. 5 to cover the complete
spectrum of one- and two-magnon excitations and in §3
we calculate and discuss ESR transition rates.

We conclude the introduction with a discussion of the

symmetries of the ID system defined by the hamiltonian
of eq.(l). We always assume translational symmetry,
thus the wavevector q is always one good quantum num
ber. The complete rotational symmetry in spin space
present for the ideal Haldane chain (with the total spin

Stot and its projection as good quantum numbers,
implying threefold degenerate triplet (5=1) excitations
for each wavevector) is reduced to rotational symmetry
with respect to the z—axis forD^O and/or ^ 0.
Then states are classified by the total spin projection

and the basic excited triplet is split into
one doublet (which is further Zeeman splitted for finite
Bz) and one singlet (at q' = tt for D > 0 in the Haldane
phase the doublet is lowest and in the large-D phase the
singlet is lowest). For finite external field and/or E ̂ 0
the symmetry is reduced further and only reflection sym
metry is left. Reflection in spin space with respect to axis
Q is defined by the operator

K = (2)
n

Without external field, the hamiltonian of eq.(l) com
mutes with Ra for arbitrary a, and for finite external
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field in direction a, the hamiltonian commutes with Ra

for arbitrary D,E. The corresponding quantum num
bers are Tq = ±1, which we will refer to as spin parity
quantum number.

§2. Excitations in the Haldane Phase

Whereas an approximate quantitative description for

ground state and elementary excitations of Haldane-like
chains is difficult to obtain, Golinelli et al^' have shown
that the effect of anisotropies and external magnetic
field on the low energy properties can be investigated
rather successfully to lowest order when the Haldane

state in the isotropic limit is appropriately parametrized.
We shortly review their results in the following: The
ground state energy is obtained to lowest order in D

as Eg'' = Eo + \DL and is independent of B, the first
B—dependent correction appears in order DB^. All spin
parity quantum numbers ra are +1. The change in
excitation energies resulting from the anisotropies and

magnetic field is conveniently calculated using a basis of
5 = 1 states with well defined spin parities. For the
lowest excited states, which develop from the degenerate
Haldane triplet under the influence of anisotropy and
magnetic field, these eigenstates of Ra are expressed in
the standard S^g^ basis with states \Stot = ^
follows;

se ui ria are expresseu in

quantum number Va survives as good quantum number,
i.e. two of the basis states mix wheras the energy of the
third one remains unaffected by the magnetic field.

In the following we extend these results of ref. 5 in sev
eral ways: (i) the wavefunctions of the excited states are
written down, demonstrating the mixing of the different
components of (which is no more a good number)
and preparing the discussion of ESR transition rates in
§3, (ii) the full, wavevector dependent spectrum is dis
cussed and (iii) the combined effect of anisotropy and
magnetic field on two magnon states is discussed.

2.1 One-magnon states: wave functions and full spec
trum

In the variational approach of ref. 5 energies as well as
wave functions of the one-magnon states are expressed
by the gap energies Aq atH = 0,D = E = 0 and by the
parameter k. For the external field in x—direction the
result is (we assume for definiteness Bx = B > 0, Az —
Ag>0)

Cx = Ax; \ifx) = k), (6)

^ / \

basis with states \Stot =

k) = ;^(|5,^ot = +l) - |5f,, = -l)),
rx = -1-1, ry = rz = -1,

\y) = 4(|5,^ot = +l) + |5,^ot = -l».

\z) = \Sfg, = 0),

rx ~ y ~ 1, ~ -fl.

When the effects of anisotropies and field are calcu
lated using these states, the properties of the Haldane
state enter only in the form of two parameters, (i) en
ergy gap Aq at zero anisotropy and field and (ii)

« = EG - (4)
n  ̂ /

which is finite in the thermodynamic limit L ̂  oo. At
zero magnetic field the triplet splits under the influence
of the anisotropies D and E producing three gap ener
gies

Ax = Aq — kL) -\- 3kE^

Ay = Aq — kD — 3kE, (5)

Ax = Aq "b IkD.

The effect of the anisotropies and the external field on
these lowest excited states is now obtained from a diag-
onalization in the subspace of the states of eq.(2). This
amounts to assuming D,E <^\ and the magnetic field
B well below the critical field Be- The resulting energies
have been discussed in ref. 5: when the external field is in

one of the coordinate directions (a), the corresponding

where

\^yz{i)) = a\y)-\-b\z),

\^yz(2)) = b\y)-a\z),

The lowest excitation energy is egz(i). \ipx) is eigenstate
of with eigenvalue 0, \tpyz(i),yz(2)} approach eigen
states of 5fo( with eigenvalues ±1 for u —» 0, i.e. large
field (Zeeman states). Spin parity rx is the only remain
ing good quantum number with values rx = -bl for \ipx)
and Tx = -1 for \ipyz(i)) and \rpyz{2))- Magnon energies
and wave functions for the external field in z—direction

are obtained by interchanging the coordinates x and 2 in
eqs.(6-8) above.
The results for energies and wave functions remain

formally valid for the first excited state with arbitrary
wavevector q when the gap energies Aq are replaced by
the zero field excitation energies Wq (q) at the wavevector
considered. This means that the parameter k, which con
tains the necessary information about the system in the
isotropic, no field limit has to be taken as q'—dependent.
The result of a numerical calculation of K{q) is given in
Fig. 1 for L = 10,12,14. Whereas the energies Waiq) are
found to exhibit strong L—dependence, a comparison of
the results for different L shows that /t(q) is practically
L-independent. The most interesting feature is that
K{q) changes sign at q » 0.757r. This implies that the or-
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der of levels at wavevector tt, where the doublet is lower

than the singlet, is reversed for q < qr,qr ~ O.TStt. At
q = qr the spectrum of excitations shows an accidental
degeneracy.

G- Ol^io
Q P~l Laf2

0.5 0-—0£,=N

ear combinations of states \Stot^Mtot) with total spin

Slot = 0,1 or 2 and the mixing coefficients depend on
the magnetic field. The two magnon state lowest in en
ergy, \ipyz(\),yz{i)) is obtained by combining two quanta
with energy iyz(i)^ and the second lowest, \'>pyz(i),x) by
combining two quanta with energy eyz{i) and tx- For the
unnormalized wavefunction of these two states we obtain

(again for external field in x—direction)

\yz{l),yz{l)) =(A,-A,) (i|2iI  +2) -f- -|2; -2)

|0;0)^
+ J{Az-Ay)^ + AB^ 2l2;+2)

Fig. 1. The parameter /t(g) determining the splitting of one-
magnon energies due to anisotropy

An analytical estimate for K{q) is obtained using the
simplest model for the Haldane triplet, the crackion
modeF^'^^^ which in the AKLT limit gives the follow
ing expression:

19 cos 2q -I- 6 cos q + \

^  12 Scosq' -I- 5
This result is valid at the AKLT point (with bi

quadratic exchange of strength /3 = — |) in the crackion
approximation and its quantitative value is very limited
away from this point as is seen by the result /t(7r) = g,
substantially different from the numerical value K(7r) « |
for (8 = 0. However, it is interesting that K{q) changes
sign at q « O.SStt indicating the same type of level cross
ing which is found in the numerical results. These results
for one magnon states at finite wavevector are meaning
ful only if the wavevector is sufficiently large to guarantee
that the lowest excitation is not a two-magnon state, i.e.
qo < q < n with qo w iyr.

2.2 Two-magnon states

Two-magnon states can be discussed in a way anal
ogous to the one-magnon states starting from the nine
states obtained as combinations of the beisis states of

eqs.(3). As explicit example we give in the following
the lowest energy two-magnon states with wavevector
q = 0 which are obtained in the unperturbed limit by
adding two one-magnon quanta with q = n. With
B = 0, = 0, D 0 we obtain one level with energy
2Ao -I- 4k; with = 0, a fourfold degenerate level with
energy 2Ao -f- k and S^g^ = ±1 (each of these twofold)
and a fourfold degenerate level with energy 2Ao - 2k
and and = 0 (twofold) and S^gi = ±2. The en
ergies of these states in the external field are obtained
trivially by adding the energies of the two constituent
quanta as given in eqs.(6) and (7) and an excitation con
tinuum results as usual. However, total spin Stot is no
more a good quantum number, the eigenstates are lin-

'2'^' x/6' ' ' '

+B(|2;+1) + |2;-1)),

+

l?/2(l),a:)

 1|2;-2)-A|2,„),^|0;0))
+B(|2;+1) + |2;-1)),

Ml),x) = ({Ay-Ax) + y/{Az-Ay)^ + iB^'^
(|2;+1)-|2;-1) + |1;+1) + |1;-1))

+B(|2;+2)-|2;-2) + ̂/2|l;0)). (9)
Here \Stot,Mtot) is the state obtained by combining

two triplet excitations (states in the isotropic limit) with
wavevector tt each to a state with total spin Stot and
spin projection Mtot- The first of these states has spin
parity Tx = +1, the second one Tx = -1. It is seen
that the angular momentum of the two magnon states
is a mixture of all possible values Stot = 0,1,2 owing to
the effect of anisotropy and magnetic field; this opens the
possibility to have ESR absorption lines from the ground
state to two-magnon excited states as will be discussed
in the next section.

§3. ESR Transition Rates

In this section we present results for magnetic dipole
transition rates as observable in ESR experiments. Mag
netic dipole transitions between states i and / are deter
mined by the matrix elements of the components of total
spin Sfot = En ■^n. 0^ (/I S^gt K) and the transition
rate is

Rf.^ = (10)
0

where we have denoted the components of the microwave
radiation field as hg. For the external magnetic field B
in direction a we have the following selection rules
Aq = 0, i.e. conservation of total momentum,
AStot = 0, i.e. conservation of total angular momen
tum,

Ta'' = for h oc e,,, resp. = -r^a for h T e^.
When transitions from the ground state are consid

ered, |i) = |g), the angular momentum selection rule al
lows low energy transitions only when the ground state
has admixtures of higher angular momenta since Stgt al
ways annihilates \g) when |g) is a singlet. Moreover, the

-ra^ for h T Cq.
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momentum selection rule allows only transitions to two-
magnon states at wavevecor q = 0. Transitions between

states with identical wave vector in the excited triplet are
allowed when the spin parity selection rule is satisfied.
In the remainder of this section, the transitions rates for

the various cases of experimental interest are calculated
using the results of §2.

Transitions between members of the first excited triplet:
For the external magnetic field in x- and ̂ -directions

the states are given in §2 and the relevant transition ele

ments are obtained as given in Table I (only nonzero ele
ments are listed), a, b are given in eq.(8). In order to test
the validity of the approximation, we present in Fig. 2
for B (X ex,h (X Cz the results of a numerical calculation
of the transition rates between the states |y2:(l)) —> |a:)
(lowest to middle state, upper curve) and of the transi
tion |x) —> \yz{2)) (middle to upper state, lower curve)
for a chain with L = 14, i.e. the quantities a? and 6^. It
is seen that the dependence on magnetic field is repro
duced perfectly by the analytic results and it becomes
clear that, by using different wavevector directions and
by varying the external magnetic field in direction and
magnitude, levels can be identified and the interpreta
tion of the spectra can be checked even for unpolarized
radiation.

0.00 0.10 0.20 , 0.30 0.400.31

Fig. 2. ESR-transition rates for transitions between members of

the first excited triplet, see text

Ground state transitions:

A finite transition rate for transitions from the ground
state requires the presence of higher spin admixtures
to the ground state as induced by the combined effect
of anisotropy and magnetic field in the following way:
We start by considering finite (but subcritical) mag
netic fields at vanishing anisotropy, such that the ground
state does not depend on the magnetic field and treat
an anisotropy £) / 0 in perturbation theory, assuming
D ̂  1 as in section II. The first order correction in D to

the Haldane ground state wave function l^o) for a sub-
critical magnetic field in a:-direction is then obtained

0.0 0.2 0.4 0.6 0.8

H

Fig. 3. ESR-transition rates for transitions from the ground state
to the lowest two-magnon state, see text

Iff) = Iffo) + D{{\exc{iy,Stot = = -1-2)

-l-|ea:c(l); Stot = 2, = —2))

-f-|ea:c(2); Stot = 2, = -1-0)),

where |exc(l, 2); Stot, Sfot) are states with definite angu
lar momentum properties, but otherwise unknown. A
complete calculation of the matrix elements relevant for

ESR transition rates requires knowledge of these states in
detail, the dependence on external magnetic field, how
ever, is determined completely by the angular momen
tum coefficents and is obtained as follows:

Transition from the ground state to the lowest two-
magnon state at q = 0 with spin parity Tx = -fl: A
nonzero matrix element is obtained only when the mi
crowave field h is in a:—direction and the field dependent
part of the transition amplitude is

's/z(l),y3(l);g a {yz(l),yz{l)\S^Jg)

= constant DB.

The energy of this transition is twice the gap energy and
approaches zero at the critical field. The transition rate
vanishes when the magnetic field approaches zero which
illustrates that it is the combined effect of anisotropy and
magnetic field which makes the transition rate finite: For

vanishing magnetic field S^ot is a good quantum number
and matrix elements become zero.

Transition from the ground state to the second lowest
two magnon state at ̂  = 0 with spin parity = -1: A
nonzero matrix element is obtained only when the mi
crowave field h is perpendicular to the x-direction and
the field dependent part of the transition amplitude is

hocey-. oc {yz{l),x\Slt\g)

= constant D B ̂\/u^ -I- 1 — ,
h oc ex : T^zii),x-,g {y^i^)^x\S^ot\9)

= constant BB, (12)

where the notation of eq.(8) has been used. The energy
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direction of B

B (xcx

B (X e 2

transition

yz{l) (x)

(x) ->■ 2/2(2)

2/2(1) -> yz(2)
yx(l) -> yx(2)

yx(l) (z)

yx(2) — (2)

direction of h matrix element

oc ey —ib

oc a

XCy ia

oc b

oc ex

oc Cz i(a2 - 62)
oc ex

oc Cy

oc ex

oc Cy

intensity for
k X Cy

intensity for
k X Sz

62

62 a2

i(62 - a2)2
i(62 - a2)2

i(62 - a2)2
0

i(a2 + 62)

W i(a2 -1-62)

Table 1. ESR transition matrix elements Tj/ and intensities (for unpolarized microwave radiation) Ri/ with
external magnetic field in x— and 2—directions.

of this transition is above the gap energy by A^, thus it
approaches at the critical field. It should be noted
that this transition coincides with the transition yz(l) —»
(x) inside the excited triplet in spin parity change and,
when the critical field is approached, also in energy.

In Fig. 3 we present the result of a numerical calcu
lation of the transition rate from the ground state to
the lowest two magnon state for L = 14. The tran
sition rate increases quadratically with magnetic field
up to B Rs 0.4, for higher fields some deviations occur
which probably result from the low excitation energies
and small system size. It is also seen that at the criti
cal field (which appears shifted to larger magnetic fields
due to finite size effects) a level crossing occurs and the
transition rate to the lowest q = 0 level above the critical
field decreases with B. These effects will be dealt with
in a forthcoming publication devoted to the high field
phase.

§4. Conclusion

We have applied the simple analytical approach of
ref. 5 to calculate the magnetic field dependence of
ESR transition rates in the Haldane phase of anisotropic
S = 1 chains in an external magnetic field. Transi
tions are possible both within states belonging to the
anisotropy split first excited triplet, as well as between
the ground state and low-lying two magnon states. Char
acteristic variations of intensity allow to identify the par
ticipating levels. Numerical calculations for S = 1 chains
up to 14 spins confirm the analytical results.
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