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Quantum Dynamics in Nanoscale Magnets in Dissipative Environments
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In discrete energy structure of nanoscale magnets, nonadiabatic transitions at avoided level
crossings lead to fundamental processes of dynamics of systems. The thermal environment caus
es dissipative effects on these processes. In this paper we review the features of the nonadiabatic
transition and the influence of the thermal environment. In particular we discuss the temperature
independent stepwise structure of magnetization at very low temperatures (deceptive nonadia
batic tr2insition), the alternate enhancement of relajcation in the sequence of resonant tunneling
points (peu-ity effects), and processes caused by combinations of nonadiabatic transitions and
disturbance of external noises.
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§1. Introduction

Hysteresis phenomena of ferromagnets have been one
of the most interesting problems in magnetization and
statistical physics. Mechanism of the coercive force has
been investigated by studying the processes that lead to
the critical nucleation and motion of the domain wall.^'
From the point of view of free energy of the system, the
h5rsteresis phenomena have been discussed in terms of
the relaxation process of the metastable state to the true
equilibrium state in the picture shown in Fig. 1 (a).
Usually the end point of hysteresis is related to the so-
called spinodal point where the metastability disappears
(see Fig. 1 (b)).

However there is some probability of relaxation from
the metastable state B to the equilibrium state A. For
example at finite temperatures the probability of ther
mal excitation to the top of barrier C is proportional to
exp(—AjFe/fcer) and thus the relaxation rate pth of the
metastable state is given by

Pth = —e , (1.1)
To

i.e., the Arrhenius law. At low temperatures the relax
ation time r = 1/pth of this process diverges exponen
tially.
The shapes of the free energy in Fig. 1 are given by

the mean field theory, which gives a good intuitive pic
ture of the metastability. Here it should be noted that

AEb should be a microscopic quantity. Otherwise for a
bulk system AEb is of order the system size and then

Pth = 0. For a more quantitative understanding, we
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Fig. 1. Potential pictures of relaxation: (a) metastable (b) spin
odal.

must look at the system microscopically. There the sys
tem is not uniform and a microscopic break through of
the metastable state yields the critical nuclei. In this
case we have to consider the process of creating such
critical nuclei.^' There Figs. l(a)-(b) represent the ef
fective potential of the size of the nuclei. The relaxation
time of metastable states has been classified according to



Seiji Miyashita, Keiji Saito, Hiroto Kobayashi and Hans De Raedt

the size of system and the generating rate of the critical
nuclei. There are two regions, i.e., a single nucleation
region (stochastic region) and a multi nucleation region
(Avrami region).^'
When the size of the magnets becomes smaller than

the width of the domain wall, the nucleus can not be
defined. In such cases, the magnetization of the sys
tem changes uniformly and this process of breakdown of
the metastable state is called "coherent process". Relax
ations in this situation also have been studied extensive

ly.^'
It has been pointed out that quantum fluctuation may

play an important role in such small systems. In order to
detect such quantum processes, several experiments have
been conceived out.^' However due to the distribution of
particle sizes, it is difficult to analyze their processes.®'
Studies on single magnetic particles have been also per
formed but clear evidence of quantum processes has not
yet been found.
In this respect, nanoscale molecular magnets such as

Mni2,®~^^^ Feg,^^"^®' and etc. are more promising.
These molecules Mni2 and Fes consist of small number of

atoms forming an effective 5 = 10 spin and interactions
among molecules are very small. Thus each atoms can
be regarded as a 5 = 10 single spin. The Hamiltonian of
such model is generally given by

n= -DSl -HS,+Q, (1.2)

where Sz = -10, —9, • • ■ 10 and Q denotes a term which
causes the quantum fluctuation, such as Sx, — S^, or
(5+)^ -I- In these systems the energy levels as a
function of the field have a discrete structure (Fig.2(a))
such that very explicit quantum mechanical dynamics
can be expected.
At each crossing point, a small energy gap is formed

due to Q (Fig.2(b)). This local structure is called avoided
level crossing. When the field is swept through such an
avoided level crossing point, so called nonadiabatic tran
sition occurs. Nonadiabatic transition plays important

roles in microscopic quantum dynamics such as level dy
namics of semiconductor, chemical reaction and optics.

The transition probability in various cases of nonadia
batic transitions has been reviewed by Nakamura.^®'
In the present case of uniaxial magnets, the nonadi

abatic transition between two crossing levels as shown
in Fig.2(b) will be concerned. The population coming in
from the channel A is scattered to B and C with a proba
bility p and l—p, respectively. Here p is a probability to
stay in the same level, i.e. to behave adiabatically. This
process corresponds to tunnel. On the other hand, l—p
is a probability to jump up to the channel C. The states
of the channel A and C are the same state when there

is no quantum fluctuation i.e., <3 = 0. This unperturbed
state is called diabatic state. The these channels A and

C have similar states even in the presence of Q. This
process corresponds to un-tunnel. The probability p was
studied by Landau,^®' Zener^®' and Stiickelberg^^' and
is given by

nv^9X ' \m^9
10 m

-0.5 0 0.5 1

Fig. 2. Energy structure of S = 10 Uniaxial magnet as functions
of the external field H- (a) global structure and (b) avoided level
crossing.

where AE is a gap at the avoided level crossing and
Am is the difference of magnetization of the levels, c
is the speed of the sweeping field, c = dH/dt. Thus
PPb Amc is the changing rate of the Zeeman energy.
The probability p plays an important role in quantum
mechanical relaxation of the present system.
This LZS type nonadiabatic transition has two char

acteristics. One is the localization of transition. That is,
the transition occurs only in the vicinity of the crossing
points. The other is the sweeping rate dependence. The
first property is essential ingredient for the relaxation at
discrete points of magnetic field found in moleculm mag
nets. Making use of this dependence we can estimate
AE from change of magnetization AM . Let the cross
ing levels have magnetizations m and m' at off-resonant
region. The change of magnetization is given by

AM = pm' -I- (1 — p)m — m = p{m' — m). (1.4)

In the cases where AE is observed by other methods such
as AC-susceptibility, this sweeping dependence of AM
would give a method to confirm that AE is really comes
from the tunneling gap.^®' However such confirmation
has not yet observed in small magnetic particles such as
magnetic dots and ferritin. On the other hand the two
characteristics have been observed in molecular magnets
at least qualitatively. It has been also pointed out that
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the application of an alternate field at the resonant points
will cause a nontrivial oscillation of magnetization due to

phase interference.^^'
For quantitative analysis we need to incorporate the

effects of environments. Effects of noise on the LZS tran

sition has been studied by Kayanuma.^®' A thermal bath
causes enhancement of the relaxation, e.g. the thermally
assisted resonant tunneling, where resonant tunnelings
of excited states play an important role. Furthermore
contact with the bath causes relaxation between levels

which have magnetizations of the same sign, because an

energy barrier does not exist. In the potential picture
of Fig. 1(a), both states belong to the same valley and
the energy barrier does not exist between them. In pure
quantum mechanical motion, transitions between these
levels are very rare except near the avoided level crossing
points.

In this paper we study the characteristics of the reso
nant tunneling affected by thermal disturbance. In par
ticular, we study the effect of environment at very low
temperatures such that relaxation process does not de
pend on the temperature. But the magnetization curve
is different from the one of a pure quantum case. We
call such process "deceptive nonadiabatic transition".^^'
At higher temperatures, excitation levels begin to con
tribute to the relaxation phenomena. At higher temper
atures, alternate enhancements of relaxation at resonant

points are observed, which is called 'parity effect' reflect
ing the structure of energy levels, we consider the mech
anism of such alternate in a view point of nonadiabatic
transition of excited state and find it as a general prop
erty of resonant tunneling of excited states.^®' We also
discuss the v^-dependence of initial decay at resonant
points. Furthermore we study various cases of the LZS
process in fluctuating random environments.

§2. Numerical Method

In order to investigate quantum dynamics in dissipa

tive environments, we have used two kinds of numerical
method. The most standard method to study quantum
dynamics in dissipative environments is the quantum
master equation which describes the equation of the mo
tion of the reduced density matrix of the system

The equation is derived by tracing out the degree of the
freedom of the environment from the density matrix of

the total system which consists of the system Ksi the
thermal bath Wb and interaction between them Hi'.

W = Ws+Wi+Wb, (2.1)

p{t) = Tree-''^. (2.2)

In the limit of weak coupling, assuming that the correla
tion time of the bath variable is very short (Markovian
approximation), we have an equation in the following
form

|p(t) = l[?^,p(t)] + rp(t), (2.3)
where F is a linear operator acting on p{t). This equation
has been used to study quantum dynamics of optical

process, etc. In most cases Fp has the so-called Lindblad
form®®'

Tp = A'^ Ap + pA'^ A-\- pAApA\ (2.4)

where A is an operator of the system. However in mul-
tileveled phenomena Fp has more general form.

In the cases where the bath consists of infinite number

of bosons, a general expression can be derived.®^'

^ = -i [n, p{t)] - A ([A, Rp{t)\ + [A, i?p(t)]t) ,
(2.5)

where

{k\R\fn) = C(^?L-^)np(Efc - E,^)(fc|A|m),

(^(w) = I{oj) — /(—w), and np(u) =

Here /? is an inverse temperature of the reservoir 1/T,
and we set h to be unity. |fc) and |m) are the eigenstates
of with the eigenenergies and Em, respectively.
I{lj) is the spectral density of the boson bath. Here we
adopt the form /(w) = When q = 1, it corre
sponds to the so called Ohmic bath®®' and when a = 2,
it corresponds to the phonon bath (super-Ohmic). As
a more realistic bath for the experimental situation at
very low temperature, we may take the dipole-field from
the nuclear spins.®®' A is an operator of system which
is attached to bosons of the reservoir linearly represent
ing the interaction between the system and the thermal

bath. Here we take A = 1 {Sx + Sz)- The relaxation
process can be affected by the form of A. Generally
X = Sx is more efficient than X = Sz for the relax
ation. A detailed comparison with other choices will be
presented elsewhere. The concrete form of Fp depends
on the way of coupling between the system and the ther
mal bath, and also on the nature of the thermal bath,
e.g., the spectrum density, etc. However, here we discuss
only natures which does not depend on the detail of the

model. ®^'
For strong noise caused by fluctuating forces we can al

so simulate quantum dynamics in random fields by solv
ing the Schrodinger equation.

§3. Quantum Dynamics in Dissipative Environ
ment

3.1 Deceptive nonadiabatic transition

In the lowest avoided level crossing point (—5,5) the
change of magnetization AM is given by (1.4) . How
ever at higher crossing points {m,m') with m' < 5, the
population that is scattered from m to m' is found to de
cay easily to the ground state, i.e., m' —► 5, even when
the dissipative effect is so small that the population at
the metastable level of m hardly decays. This difference
can be easily understood from the intuitive picture of
Fig. 1(a). That is, the relaxation in the same valley,
i.e., m' —+ 5, is easy while the relaxation over the barrier
m —+ 5 is hard. In this situation, we can not apply the
relaxation (1.4) directly to estimate the LZS probability
p. However we can still estimate p using AM because
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the relaxation from the level of m occurs with the LZS

probability and the relaxing population decays to the
ground state in a rather short time. Taking these points
into account, we modify the relation (1.4) by replacing
the final magnetization m' by 5:

AM = pS — {1 — p)m — m = p{S — m). (3.1)

In order to confirm these processes we performed simula
tions using the QME. First we confirmed that relaxation
from the metastable point is unlikely to occur when the
coupling between the bath and system is weak and the
temperature is low. On the other hand, a fast relax
ation is observed between levels with magnetizations of
the same sign, which are in the same valley in Fig. 1(a).
Furthermore when we sweep the field we find a step-wise
magnetization curve whose step heights do not depend
on the temperature but are definitely different from the
pure quantum case. In Fig. 3, we show an example of
magnetization process for T = 0.1, F = 0.5 with very
small effects of environment (A = 0.00001: a solid line)
and that of pure quantum system (A = 0: dashed line).
Both of them are not temperature dependent within this
temperature range. We call this stepwise structure in
dissipative environments 'deceptive nonadiabatic transi
tion'. We find that we can correctly estimate the pure
quantum transition probabilities using the relation (3.1).
Thus even at very low temperatures the effect the envi
ronment can not be excluded, but quantum mechanical
processes and dissipative effects due to environments can
be disentangled, and the information of the LZS proba
bilities can be extracted.

For the phenomena described above, the existence of
the environment is important but the detailed nature is
not important as long as it leads to fast relaxation to the
ground state. If the environment causes a change of LZS
probability, which would be possible when the sweeping
rate is very slow,^®' further consideration is necessary,
this will be discussed later.

/ Dissipative
Pure Quantum

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
H

Fig. 3. Magnetization processes in pure quantum dynamics and
a weak dissipative environment.

3.2 Parity effect

At higher temperatures, excitation levels begin to con
tribute to the relaxation leading to temperature depen
dent phenomena. These processes would depend on the
detailed characteristics of the bath and the ways of the
coupling between the system and the bath. Therefore
general description is difficult. However here we point
out a general property of relaxation under these condi
tions.

Experimentally it has been observed that the amount
of relaxation at the resonant points change alternatively.

The transition probabilities at the resonant points in
crease monotonically as the difference of magnetizations
|m - m'l of levels decreases. In fact, in perturbation the
energy gap depends on the difference as^^'

/ p \ |m-m'|af; <x (^-j (3.2)
Thus we expect that the transition probabilities at res
onant points with the same value of |m — m'| are nearly
the same. Those points are located at the same horizon
tal level in Fig. 2. For example the values of p given by
(1.3) for the case of F = 0.45 with the sweeping speed
c = 0.0001 at the points, (-8,5), (-9,4), and (-10,3) are
0.91, 0.64 and 0.99, respectively. On the other hand,
those at (-8,6), (-9,5) and (-10,4) are 0.72, 0.037 and
0.01, which are very small. Thus most of the population
at the levels m = -8,-9 and —10 decays at the former
points. These decays cause enhancements of relaxation
a,t H = 0.3,0.5 and 0.7, which gives the parity effect. In
Fig. 4, we show the magnetization of this case with its
time derivative.

Because the energy structure shown in Fig. 2 is gen
eral for uniaxial magnets, we expect that the alternate
enhancement of relaxation, i.e., the parity effect, is a gen
eral property of resonant tunneling in the thermal envi
ronment. We have also pointed out that if we change

the sweeping rate the enhanced sequence is shifted. For
example if we sweep much slower, the probabilities at

(-8,6), (-9,5) and (-10,4) become large and populations
on the lines decay there, which causes the shift of the
enhanced sequence at H = 0.2,0.4 and 0.6.

3.3 Non exponential decay at the resonant point

The magnetization which is initially polarized upward
decays rather fast at a resonant point. Here the field

is set at this point and is not swept. There are several
paths for the magnetization to relax at this point. First
let us consider relaxation by the nonadiabatic transitions
at lowest resonant point. Because at the resonant point
the energy gap is very narrow, the field fluctuates around
the point as shown in Fig. 5(a). If we regard the motion
of the field as Brownian motion, it is known that the
number of the times the field crosses the resonant point
is proportional to \/t, i.e., the recurrence time of one-
dimensional Brownian motion.

At each crossing, the population moves to the other
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M{t)
dM(t)/dH

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

This mechanism described above may give the simplest
explanation of the \/t behavior. A more detail analysis
h£is been given by the reference, taking into account
the explicit nature of the fluctuation of the external field.

3-4 Modification of the transition rate
When the amplitude of the external disturbance is

strong we have to use another estimation of the transition
probability. Kayamura and Nakayama have investigated
LZS transition in fluctuating field and obtained expres
sion of the transition probability.^®' In the case where
the sweeping rate is slow and the transient time through
the resonant point is much larger than the phase coher
ence time, then they obtained the transition probability

Fig. 4. Magnetization process and its time derivative.
P = PSD = 2(1 exp(—7r(A£^)^/2c)).

Fig. 5. (a) Random field near the resonant point and (b) Relax
ation process through the excited state.

branch by the LZS transition probability

,  >r(AE)\ ir(AE)''

In a pure quantum mechanical process, quantum me
chanical interference occurs among the transitions.^®'
But assuming a fast decoherence, the total transition
probability is expected to be given by

Ptotal(i) ̂  ̂Pi t/t (3.4)

Thus we naturally expect that the magnetization decays
as

AM = Mo(l - 2aVi) (3.5)

at the initial stage.
For a longer time scale, the field does not fluctuate

freely but is confined near the resonant point. Thus
Ptotal for long time is proportional to t. Therefore the
magnetization decays in exponentially

M(t)~e-^/^, (3.6)

On the other hand, when the transient time is very short,
transition probability does not change from that of the
pure LZS transition

P = PLZS = 1 - exp(—7r(A£')^/4c). (3.8)

They confirmed such dependences by numerical simula
tion.

Next, let us consider a case where excited levels con
tribute to the relaxation. If the frequency of contacts
between the system and the bath is high, a tunneling
through the excited state would enhance the relaxation
rate even the population at the excited state is very lit
tle.®^'

Let us consider the case where the LZS transition prob

ability at the lowest level po is very small and the one
at the excited level pi is of the order 1. Let us consider
a case where an state is excited to the exited level. In

the off-resonant region this excited state decays to the o-
riginal state very rapidly. The population at the excited
state riE is determined by the balance equation

nEi?E-.G = ugRg^e, (3.9)

where no is the population in the ground state and

Re-*g and Rg->e are transition rate from the excit
ed state to the ground state and vise versa. Although
ue = i?G—e/.Re—G^G is very small, Re->g and Rg-,e
themselves can be very large.

At the resonant point, small fluctuations of the field
would cause the crossing the point. Thus the population
pumped to the excited state can be transferred to the
state B' and then it decays to B instead of A. (Fig.5(b))
This path (A—> A'—> B'—> B) becomes dominant path
when Pi » Po and fluctuation of the field is rather fast.
The opposite path (B—> B'—> A'—> A) is also large, but at
least in the initial stage where most of the population is
at A. Thus the population moves along the former path.
Thus the effective transition rate A —> B is enhanced

very much.

Peff ̂  Rg^ei^Pu (3.10)

where n is the frequency of the crossing. For short time v
is proportional to sft and for long time it is proportional
to t as we saw above.
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To study the transition probability in such case, cor
rect informations for Rq-^e and are necessary, but it
is generally difficult. However, if we could estimate these
quantities from the enhancement, which would yield de
tailed knowledge of the bath. In nanoscale molecular

magnets, it would be possible to study such detailed
property, which is a very interesting research area in the
future.

§4. Summary and Discussion

In nanoscale molecular magnets display several phe
nomena which originate from explicit quantum mechan
ical transitions between discrete levels. In this paper we
studied effects of dissipative environment which smears
the pure quantum processes. So far the relaxation pro
cesses have been a kind of black-box and has been treat

ed only phenomenologically. But it would be possible to
begin to study explicit processes of relation in nanoscale

magnets because of the simple form.
So far we studied the 5 = 10 spin representing the

low energy structure of magnetic energy levels. Let us
consider structure of the full energy level. The molecu
lar magnets have complicated structures. For example
Mni2 includes 12 Mn molecules with many other atoms
which have nuclear spins. Thus the dimension of total
hamiltonian is 4® • 5"^ x / where I comes from the degree
of freedom of nuclear spins. This degree of nuclear spins
causes random effects on each Mn atom. It would be an

interesting problem to study how this random field on
individual atoms causes changes of the energy levels at
low temperatures.
Even without the effects of nuclear spins, there are

dipole-dipole couplings among the molecules which cause
random noise on the whole molecule. Thus it should be

taken into account even in the view point of 5 = 10 spin.
Effects of this field are studying as 'Feedback-effect' on
the LZS process of magnetization. It would be inter
esting to study natures of noises explicitly in nanoscale
molecular magnets.
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