Diverse Magnetic Ground States in the Tetragonal $R^{11}B_2C_2$ (R=rare earth) System

Kenji Оноуама, Aya Tobo, Hiroki Yamauchi, Koji Kaneko, Kentaro Indoh, Hideya Onodera, Yasuo Yamaguchi and Hiroaki Kadowaki¹

> Institute for Materials Research, Tohoku Univ., Sendai 980-8577, Japan ¹Department of Physics, Tokyo Metropolitan Univ., Tokyo 192-0397, Japan

Magnetic structures have been investigated in $\mathbb{R}^{11}\mathbb{B}_2\mathbb{C}_2$ (R=rare earth) with the same tetragonal structure as that of the antiferroquadrupolar (AFQ) ordering compound DyB_2C_2 by powder diffraction technique. $\mathbb{R}^{11}B_2C_2$ shows various and characteristic magnetic structures including long period structures, which are caused by competition among AFQ and antiferromagnetic interactions and magnetic anisotropy by the crystalline electric field effect.

KEYWORDS: RB₂C₂, antiferroquadrupolar ordering, magnetic structure, neutron powder diffraction

§1. Introduction

DyB₂C₂ with the tetragonal LaB₂C₂ type crystal structure (P4/mbm : La at 2(a) site and B, C at 4(h) site)¹⁾ is the first compound which undergoes an antiferroquadrupolar (AFQ) ordering among tetragonal compounds with well-localised 4f states; it exhibits the AFQ ordering at T_Q =24.7 K and a further transition to an antiferromagnetic (AFM) state with a weak ferromagnetic component at T_N =15.3 K,²⁾ Note that T_Q of DyB₂C₂ is nearly ten times higher than those in other AFQ compounds, for instance, T_Q =1.8 K in TmTe³⁾ and T_Q =3.3 K in the Kondo compound, CeB₆.⁴⁾ The AFQ ordered state in DyB₂C₂ below T_Q was confirmed by means of the resonant X-ray diffraction technique as well.^{5, 6)}

Onodera *et al.* reported that the isostructural compound HoB₂C₂ also undergoes an AFQ ordering at $T_Q=5.0 \text{ K}^{.7}$ The temperature dependence of magnetic susceptibility of HoB₂C₂ shows an apparent anomaly at T_Q , and a broad hump at $T_N=5.8 \text{ K}$ which is higher than T_Q . Since phase IV between T_Q and T_N is a magnetic ordered state, HoB₂C₂ is a new type AFQ material which exhibits the AFQ ordering in a magnetic ordered state.⁷⁾

The AFQ orderings in DyB_2C_2 and HoB_2C_2 were confirmed from a characteristic magnetic structure: the angle between adjacent magnetic moments, which lie in the c-plane, along [001] is about 70° ,⁸⁾ the magnetic moments in the *c*-plane make an angle of about 150° in each *c*-plane. Consequently, the magnetic structure has a periodicity of 2c along [001], where c is the lattice constant. To describe the fundamental magnetic structure of DyB_2C_2 and HoB_2C_2 , two propagation vectors of $k_1 = [100], k_2 = [011/2]$ are needed, besides $k_3 = [000]$ and $k_4 = [001/2]$ for the canting structure in the *c*-plane. The multi-k structure in the AFQ compounds is thought to be caused by effects of competitive coexistence of AFQ and AFM interactions.^{2,8} In other words, therefore, to understand roles of AFQ and AFM interactions for the magnetic properties, it is important to make clear and to compare the magnetic structures in the isostructural

 RB_2C_2 system. This work, thus, aims at determining the magnetic structures of $R^{11}B_2C_2$ by neutron diffraction technique. Some of the detailed results have been reported elsewhere.^{2,8,9)}

§2. Experimental Details

For sample preparation, the mixtures of 99.9% pure R(R=Ce, Nd, Tb, Dy, Ho, Er and Tm), 99.5% pure ¹¹B and 99.999% pure C were melted by the conventional argon arc technique. To avoid strong absorption, natural boron was replaced with enriched ¹¹B isotope. Single crystals of $R^{11}B_2C_2$ grown by the Czochralski method with a tri-arc furnace were crushed into fine powder for neutron powder diffraction experiments.

We performed neutron powder diffraction experiments on the powder diffractometer for high efficiency and high resolution measurements, HERMES, belonging to Institute for Materials Research, Tohoku University, installed at the JRR-3M reactor in Japan Atomic Energy Research Institute, Tokai.¹⁰⁾ Neutrons with a wavelength of 1.8196Å were obtained by the Ge 3.31 monochromator and 12'-blank-sample- α_3 collimation, where α_3 was 22' for R¹¹B₂C₂(R=Ce, Nd, Tb, Dy, Ho and Tm), and 18' for Er¹¹B₂C₂.

§3. Results and Discussion

Figures 1 show the powder patterns of $R^{11}B_2C_2$ (R=Dy, Ho, Tb, Nd, Er and Tm) in each ground state obtained on HERMES. Bragg peaks denoted with letter M are magnetic ones because the peaks do not exist in the paramagnetic states. As shown in Figs. 1, $R^{11}B_2C_2$ show various powder patterns in spite of the same crystal structure. Based on the obtained patterns, the compounds are classified into three groups: Upper: $Dy^{11}B_2C_2$ and $Ho^{11}B_2C_2$. Middle: $Tb^{11}B_2C_2$. Below: $Nd^{11}B_2C_2$, $Er^{11}B_2C_2$ and $Tm^{11}B_2C_2$.

The patterns of $Dy^{11}B_2C_2$ and $Ho^{11}B_2C_2$ in Figs. 1(a) and 1(b) are characterised by the strong M100 and M101/2 magnetic peaks with $k_1=[100]$, $k_2=[011/2]$. These peaks and the weak M001/2 peak indicate the

	$T_{ m N}$	$T_{\mathbf{Q}}$	k	μ	α_J	Coupling along [1 1 0]	[0 0 1]
$Ce^{11}B_2C_2$	$6.5{ m K}, 7.3{ m K}^{11)}$		$[\delta \delta \delta']$	$\mu \perp c$	-0.0571	F	F
$Nd^{11}B_2C_2$	$8.0 { m K}^{9)}$		\boldsymbol{k}_1	$\mu//c$	-0.0064	AF	F
$\mathrm{Tb}^{11}\mathrm{B}_{2}\mathrm{C}_{2}$	$21.7 \mathrm{K^{14)}}$		$oldsymbol{k}_1, oldsymbol{k}_{\mathrm{L2}}$	$\mu \perp c$	-0.0101	AF	AF
$\mathrm{Ho}^{11}\mathrm{B}_{2}\mathrm{C}_{2}$	$5.8 { m K}^{7)}$	$5.0 { m K}^{7)}$	k_1, k_2, k_3, k_4	$\mu \perp c$	-0.0064	AF	70°
$^{*}\mathrm{Ho}^{11}\mathrm{B}_{2}\mathrm{C}_{2}$			$oldsymbol{k}_1,oldsymbol{k}_{\mathrm{L}1}$	$\mu \perp c$		\mathbf{AF}	\mathbf{F}
$\mathrm{Dy^{11}B_2C_2}$	$15.3\mathrm{K}^{2)}$	$24.7 \mathrm{K}^{2)}$	k_1, k_2, k_3, k_4	$\mu \perp c$	-0.0022	\mathbf{AF}	70°
$\mathrm{Er}^{11}\mathrm{B}_2\mathrm{C}_2$	$13.0 \mathrm{K} \ 15.9 \mathrm{K}^{14)}$		\boldsymbol{k}_1	$\mu//c$	0.0025	\mathbf{AF}	\mathbf{F}
$^{*}\mathrm{Er}^{11}\mathrm{B}_{2}\mathrm{C}_{2}$			$m{k}_{ m L2}$	$\mu//c$		AF	F
$\mathrm{Tm}^{11}\mathrm{B}_2\mathrm{C}_2$	$16.5 \mathrm{K^{14)}}$		$oldsymbol{k}_2$	$\mu//c$	0.0101	AF	AF

Table I. Summary of the magnetic structures of $\mathbb{R}^{11}\mathbb{B}_2\mathbb{C}_2$. In the table, k means propagation vectors for the magnetic structures and α_J are the Stevens' multiplicative factors. F and AF mean ferromagnetic and antiferromagnetic couplings, respectively.

 $\begin{array}{l} {\pmb k}_1{=}[1\,0\,0],\,{\pmb k}_2{=}[0\,1\,1/2],\,{\pmb k}_3{=}[0\,0\,0] \text{ and } {\pmb k}_4{=}[0\,0\,1/2],\,{\pmb k}_{\rm L1}{=}[1{-}\delta\;\;\delta\;\;\delta'],\,{\pmb k}_{\rm L2}{=}[1{-}\delta\;\;\delta\;\;0] \\ {}^* \text{ intermediate phase in Ho}^{11}{\rm B}_2{\rm C}_2 \text{ at } 5.3\,{\rm K} \text{ and }{\rm Er}^{11}{\rm B}_2{\rm C}_2 \text{ at } 14\,{\rm K} \end{array}$

Fig.1. Powder patterns of R¹¹B₂C₂ (R=Dy(a), Ho(b), Tb(c), Nd(d), Er(e) and Tm(f)) in the ground states observed on HER-MES. Bragg peaks indexed with letter M are magnetic ones

characteristic magnetic structure.^{2,8)} Moreover, the pattern of Tb¹¹B₂C₂ in Fig. 1(c) shows weak satellite peaks M100[±] which are caused from a long periodic component, besides strong magnetic reflections with $k_2=[011/2]$. Note that the long periodic component is based on the k_1 -type coupling as well, though it is not dominant. On the other hand, simple powder patterns of Nd¹¹B₂C₂, Er¹¹B₂C₂ and Tm¹¹B₂C₂ in Figs. 1(d), 1(e) and 1(f) indicate that the magnetic structures are simple AFM structures with single k. The propagation vector of Nd¹¹B₂C₂ and Er¹¹B₂C₂ is $k_1=[100]$, while that of Tm¹¹B₂C₂ is $k_2=[011/2]$. The magnetic moments in Nd¹¹B₂C₂, Er¹¹B₂C₂ and Tm¹¹B₂C₂ are parallel to the *c*-axis, while those in Dy¹¹B₂C₂, Ho¹¹B₂C₂ and Tb¹¹B₂C₂ lie in the *c*-plane.

The magnetic structures of RB_2C_2 are summarised in Table I. The first important feature of RB_2C_2 is the various and characteristic magnetic structures. The magnetic structures in this system show quite various combinations of magnetic couplings and propagation vectors. It should be pointed out that, in spite of the variety of the magnetic structures, RB_2C_2 except $Tm^{11}B_2C_2$ and $Ce^{11}B_2C_2$ exhibit Bragg peaks with $k_1 = [100]$. Moreover, even in $\mathrm{Tb}^{11}\mathrm{B}_2\mathrm{C}_2$, there exists the weak $k_1 = [100]$ component as satellite peaks. Since $Nd^{11}B_2C_2$ and $Er^{11}B_2C_2$ are simple [100] type AFM compounds without AFQ orderings,⁹⁾ we think that the $k_1 = [100]$ type magnetic correlation is the fundamental one in this system; the coupling along the c-axis is ferromagnetic and that in the *c*-plane is antiferromagnetic. On the other hand, both ends of RB_2C_2 have no $k_1 = [100]$ type component; $Ce^{11}B_2C_2$ shows a long period structure based on the ferromagnetic coupling, $Tm^{11}B_2C_2$ has a simple $k_2 = [011/2]$ type AFM structure.

Since, in our preliminary experiments in TbB₂C₂, an AFQ ordered state probably exists under magnetic fields as well, effects of AFQ interactions can not be neglected even in the ground state in TbB₂C₂. We conclude, thus, that the diversity of the magnetic structures is caused by competition between AFQ and $\mathbf{k}_1 = [100]$ type AFM interactions. In Dy¹¹B₂C₂ and Ho¹¹B₂C₂, the $\mathbf{k}_1 = [100]$ type AFM ordering is strongly affected by coexistence of the AFQ ordering so that the 70° relation with 2*c* periodicity along the *c*-axis is realised.

Nextly, we discuss the direction of magnetic moments. Under the lowest order approximation of the crystalline electric field (CEF) theory, magnetic anisotropy can be mainly described with the second order CEF parameter B_2^0 which is proportional to the Stevens' multiplicative factor α_J . Thus, when the sign of α_J is the same in rare earth compounds, the directions of the magnetic moments in the compounds must be the same. However, as shown in Table I, the directions of the magnetic moments in the ordered states are not consistent with the sign of α_J : the magnetic moments of $\mathbb{R}^{11}\mathbb{B}_2\mathbb{C}_2(\mathbb{R}=\mathbb{C}e)$, Tb, Ho and Dy) with $\alpha_J < 0$ are perpendicular to the *c*-axis, while those of Nd¹¹B₂C₂ with $\alpha_J < 0$ are parallel to the *c*-axis, and those of R¹¹B₂C₂ (R=Er and Tm) with $\alpha_J > 0$ are perpendicular to the *c*-axis. This indicates that B_2^0 is not the leading term of the CEF hamiltonian in the RB₂C₂ system. Higher order terms must play important roles for the magnetic anisotropy, and the diverse magnetic structures in this system as well. The quantitative treatment of CEF, thus, is highly necessary.

Another important feature of the magnetic structures in RB_2C_2 is that some compounds show incommensurate magnetic structures with long periodicity. Figures 2 show the powder patterns of $Ho^{11}B_2C_2$ and $Er^{11}B_2C_2$ in the intermediate states.^{7,8)} For comparison, the pattern of $Tb^{11}B_2C_2$ in the ground state shown in Fig. 1(c) is also displayed. In the pattern of $Ho^{11}B_2C_2$ at 5.3 K, we observed M100 and its satellite peaks M100[±] as well. On the other hand, the pattern of $Er^{11}B_2C_2$ at 14K in Fig. 1(c) reveals sharp $M100^{\pm}$ satellites without M100. The patterns indicate that the magnetic structure in the intermediate phase in $Ho^{11}B_2C_2$ can be described with combination of an incommensurate component and AFM one with $k_1 = [100]$, while only one incommensurate component exists in $Er^{11}B_2C_2$. Although the magnetic moments of $Er^{11}B_2C_2$ are parallel to the *c*-axis, from the intensity simulation, we confirmed that the satellite peaks were not caused from an anti-phase domain structure. Note that the long periodic component in the three compounds are based on the $k_1 = [100]$ coupling which is the same as the fundamental one in the ground states.

From single crystal diffraction experiments, the propagation vector of the long period component of Ho¹¹B₂C₂ was determined as \mathbf{k}_{L1} =[1- $\delta \ \delta \ \delta'$], where δ =0.11 and δ' =0.04,^{8,12}) while those of Er¹¹B₂C₂ and Tb¹¹B₂C₂ were determined as \mathbf{k}_{L2} =[1- $\delta \ \delta \ 0$] from the neutron powder diffraction experiments.¹³) In CeB₂C₂ based on the ferromagnetic coupling, however, the propagation vector was determined as [$\delta \ \delta \ \delta'$] type with δ =0.16, δ' =0.10.

It should be emphasised that the positions of the satellite peaks in the three compounds are quite close. This means that the periodicity of the incommensurate structures is nearly the same though the directions are not exactly the same,^{8,13} while the periodicity in real space of CeB₂C₂ is much shorter than those of the others. As mentioned above, an important character in RB₂C₂ is the various magnetic structures. The common periodicity in the incommensurate structures, however, may suggest that the long periodicity is caused by an influence of a common property in the RB₂C₂ system; structures of the Fermi surface, for instance.

§4. Summary

An important feature of the B_2C_2 system with the same LaB₂C₂ type structure is diversity of the characteristic magnetic structures because of competitive coexistence of AFQ and AFM interactions and magnetic anisotropy by the CEF effect. This suggests that, to understand mechanism of AFQ orderings, study of properties in only DyB₂C₂ and HoB₂C₂ is not enough, but it is indispensable to understand and to compare the magnetic properties in this system as a whole. To make clear

Fig. 2. Powder patterns of Ho¹¹B₂C₂ at 5.3 K(a) and Er¹¹B₂C₂ at 14.0 K(c) in the incommensurate phases observed on HER-MES. The same data of Tb¹¹B₂C₂ in Fig. 1(c) is also displayed. Bragg peaks indexed with letter M are magnetic ones.

the magnetic structures and dynamic properties, neutron elastic and inelastic scattering experiments with highquality single crystalline samples are now in progress.

We would like to thank Mr. K. Nemoto of IMR, Tohoku University for his assistance in the neutron scattering experiments. This work was partially supported by a Grant-in-Aid for Scientific Research(No. 12304017) from the Japan Society for the Promotion of Science.

- T. Onimaru, H. Onodera, K. Ohoyama, H. Yamauchi and Y. Yamaguchi: J. Phys. Soc. Jpn. 68 (1999) 2287.
- H. Yamauchi, H. Onodera, K. Ohoyama, T. Onimaru, M. Kosaka, M. Ohashi and Y. Yamaguchi: J. Phys. Soc. Jpn. 68 (1999) 2057.
- T. Matsumura, S. Nakamura, T. Goto, H. Amitsuka, K. Matsuhira, T. Sakakibara and T. Suzuki: J. Phys. Soc. Jpn. 67 (1998) 612.
- J.M. Effantin, J. Rossat-Mignot, P. Burlet, H. Bartholin, S. Kunii and T. Kasuya: J. Magn. Magn. Mater 47&48 (1985) 145.
- Y. Tanaka, T. Inami, T. Nakamura, H. Yamauchi, H. Onodera, K. Ohoyama, Y. Yamaguchi: J. Phys.: Condens. Matter 11 (1999) L505.
- K. Hirota, T. Matsumura, H. Nakao, Y. Wakabayashi, Y. Murakami and Y. Endoh: Phys. Rev. Lett. 84 (2000) 2706.
- H. Onodera, H. Yamauchi and Y. Yamaguchi: J. Phys. Soc. Jpn. 68 (1999) 2526.
- K. Ohoyama, H. Yamauchi, A. Tobo, H. Onodera, H. Kadowaki and Y. Yamaguchi: J. Phys. Soc. Jpn. 69 (2000) 3401.
- K. Ohoyama T. Onimaru, H. Onodera, H. Yamauchi and Y. Yamaguchi: J. Phys. Soc. Jpn. 69 (2000) 2623.
- K. Ohoyama, T. Kanouchi, K. Nemoto, M. Ohashi, T. Kajitani and Y. Yamaguchi: Jpn. J. Appl. Phys. 37 (1998) 3319.
- H. Onodera, K. Kaneko, T. Onimaru, K. Ohoyama, Y. Yamaguchi, H. Kobayashi, Y. Nemoto and T. Goto: submitted to J. Magn. Magn. Mater.
- 12) A. Tobo, H. Yamauchi, H. Onodera, K. Ohoyama and Y. Yamaguchi: submitted to J. Phys. Soc. Jpn. Suppl.
- 13) K. Kaneko, K. Ohoyama, A. Tobo, H. Yamauchi, H. Onodera and Y. Yamaguchi: submitted to J. Phys. Soc. Jpn. Suppl.
- 14) unpublished.